PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 307-323

SPECTRAL DOMAIN ANALYSIS OF A CIRCULAR NANO-APERTURE ILLUMINATING A PLANAR LAYERED SAMPLE

By K. A. Michalski

Full Article PDF (412 KB)

Abstract:
A rigorous and efficient spectral domain formalism is presented of a plane wave-excited subwavelength circular aperture in a planar perfectly conducting metallic screen of infinitesimal thickness, based on the Bethe-Bouwkamp quasi-static model. The formulation utilizes a transmission line analogue of the medium, which facilitates the inclusion of planar multilayered material samples, where the latter may exhibit uniaxial anisotropy. The transmitted field components are expressed in terms of one-dimensional Hankel transform integrals, which can be evaluated by efficient numerical procedures. Sample results are presented showing the intensity profiles and polarization states of transmitted light penetrating into a semiconductor layer.

Citation:
K. A. Michalski, "Spectral Domain Analysis of a Circular Nano-Aperture Illuminating a Planar Layered Sample," Progress In Electromagnetics Research B, Vol. 28, 307-323, 2011.
doi:10.2528/PIERB11011010

References:
1. Bethe, H. A. and Theory of diffraction by small holes, "Phys. Rev.,", Vol. 66, 163-182, Oct. 1944.

2. Bouwkamp, C. J., "On Bethe's theory of diffraction by small holes," Philips Res. Rep., Vol. 5, 321-332, Oct. 1950.
doi:10.1088/0034-4885/17/1/302

3. Bouwkamp, C. J., "Diffraction theory," Rep. Progr. Phys., Vol. 17, 35-100, 1954.
doi:10.1063/1.337294

4. Leviatan, Y., "Study of near-zone fields of a small aperture," J. Appl. Phys., Vol. 60, No. 5, 1577-1583, 1986.
doi:10.1063/1.336848

5. Dürig, U., D. W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys., Vol. 59, No. 10, 3318-3327, 1986.
doi:10.1080/09500349214550611

6. Nakano, T. and S. Kawata, "Numerical analysis of the near-field diffraction pattern of a small aperture," J. Mod. Opt., Vol. 39, No. 3, 645-661, 1992.
doi:10.1126/science.262.5138.1422

7. Betzig, E. and R. J. Chichester, "Single molecules observed by near-field scanning optical microscopy," Science, Vol. 262, 1422-1425, 1993.
doi:10.1364/JOSAA.12.000695

8. Van Labeke, D., D. Barchiesi, and F. Baida, "Optical characterization of nanosources used in scanning near-field optical microscropy ," J. Opt. Soc. Am. A, Vol. 12, No. 4, 695-703, 1995.
doi:10.1016/0030-4018(94)00555-9

9. Van Labeke, D., F. Baida, D. Barchiesi, and D. Courjon, "A theoretical model for the Inverse Scanning Tunneling Optical Microscope (ISTOM)," Opt. Commun., Vol. 114, 470-480, 1995.

10. Grober, R. D., T. Rutherford, and T. D. Harris, "Modal approximation for the electromagnetic field of a near-field optical probe," Appl. Opt., Vol. 35, 3488-3494, Jul. 1996.
doi:10.1063/1.118783

11. Decca, R. S., H. D. Drew, and K. L. Empson, "Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope ," Appl. Phys. Lett., Vol. 70, No. 15, 1932-1934, 1997.
doi:10.1016/S0304-3991(97)00067-3

12. Van Labeke, D., F. I. Baida, and J. Vigoureux, "A theoretical study of near-field detection and excitation of surface plasmons," Ultramicroscopy, Vol. 71, 351-359, 1998.
doi:10.1103/PhysRevB.58.2131

13. Bryant, G. W., E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, and R. J. Tonucci, "Theory of probing a photonic crystal with transmission near-field optical microscopy," Phys. Rev. B, Vol. 58, No. 4, 2131-2141, 1998.
doi:10.1088/0268-1242/13/8/009

14. Stevenson, R. and D. Richards, "The use of a near-field probe for the study of semiconductor heterostructures," Semicond. Sci. Technol., Vol. 13, 882-886, 1998.

15. Baida, F. I. and D. Van Labeke, "Propagation and diffraction of locally excited surface plasmons," J. Opt. Soc. Am. A, Vol. 18, 1552-1561, Jul. 2001.
doi:10.1051/epjap:2004014

16. Ducourtieux, S., S. Gresillon, J. C. Rivoal, C. Vannier, C. Bainier, D. Courjon, and H. Cory, "Imaging subwavelength holes in chromium films in scanning near-field optical microscopy. Comparison between experiments and calculation," Eur. Phys. J. Appl. Phys., Vol. 26, 35-43, 2004.

17. Lin, Y., M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, "Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy," Sens. Actuators A, Vol. 133, 311-316, 2007.

18. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.
doi:10.1364/OE.16.019342

19. Bloemer, M. J., G. D'Aguanno, M. Scalora, N. Mattiucci, and D. de Ceglia, "Energy considerations for a superlens based on metal/dielectric multilayers ," Opt. Expr., Vol. 16, No. 23, 19342-19353, 2008.

20. De Ceglia, D., M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges ," Phys. Rev. A, Vol. 77, 033848-1, 2008.

21. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

22. Rothwell, E. J. and M. J. Cloud, "Electromagnetics," CRC Press, Boca Raton, FL, 2009.

23. Iizuka, K., Engineering Optics, 2nd Ed., Springer-Verlag, New York, 1987.

24. Tyras, G., "Radiation and Propagation of Electromagnetic Waves," Academic Press, New York, 1969.

25. Michalski, K. A., "Extrapolation methods for Sommerfeld integral tails (Invited review paper) ," IEEE Trans. Antennas Propagat., Vol. 46, 1405-1418, Oct. 1998.

26. Palik, E. D., Handbook of Optical Constants of Solids, Vol. 1, Academic Press, San Diego, 1998.

27. Schouten, H. F., T. D. Visser, D. Lenstra, and H. Blok, "Light transmission through a suwavelength slit: Waveguiding and optical vortices," Phys. Rev. E, Vol. 67, 036608-1-4, 2003.

28. D'Aguanno, G., N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A, Vol. 77, 043825-1-4, 2008.

29. Rumsey, V. H., "Some new forms of the Huygens' principle," IEEE Trans. Antennas Propagat., Vol. 7, S103-S115, Dec. 1959.

30. Michalski, K. A., "Electromagnetic field computation in planar multilayers," Encyclopedia of RF and Microwave Engineering, K. Chang, Editor, Vol. 2, 1163-1190, Wiley-Interscience, 2005.
doi: --- Either ISSN or Journal title must be supplied.


© Copyright 2010 EMW Publishing. All Rights Reserved