PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 351-367

A MATRIX APPROACH FOR THE EVALUATION OF THE INTERNAL IMPEDANCE OF MULTILAYERED CYLINDRICAL STRUCTURES

By J. A. M. Brandao Faria

Full Article PDF (253 KB)

Abstract:
A matrix technique for the computation of the per-unit-length internal impedance of radially inhomogeneous cylindrical structures is presented. The cylindrical structure is conceptually divided into a number of layers, each layer being characterized by its constitutive parameters, conductivity, permeability, and permittivity. Within this general framework, compound conductors, compound capacitors, compound magnetic cores, or any other compound structures resulting from a mix of the above, can be analyzed by using the very same tool. The developed software program, MLCS, which implements the mentioned matrix technique, also permits the evaluation of the electric and magnetic fields intensity at the layers' interfaces. The MLCS program is validated by using several application examples.

Citation:
J. A. M. Brandao Faria, "A Matrix Approach for the Evaluation of the Internal Impedance of Multilayered Cylindrical Structures," Progress In Electromagnetics Research B, Vol. 28, 351-367, 2011.
doi:10.2528/PIERB11021505

References:
1. Matrone, A., S. Ferraiuolo, and L. Martini, "Development of low-losses current leads based on multilayered Bi223/Ag conductors," Il Nuovo Cimento D, Vol. 19, No. 8-9, 1469-1475, 1997.
doi:10.1007/BF03185449

2. Olsen, S., C. Traeholt, A. Kuhle, O. Tonnesen, M. Daumling, and J. Oestergaard, "Loss and inductance investigations in a 4-layer superconducting prototype cable conductor," IEEE Trans. Appl. Supercond., Vol. 9, No. 2, 833-836, 1999.
doi:10.1109/77.783426

3. Martini, L., F. Barberis, R. Bert, G. Volpini, L. Bigoni, and F. Curcio, "AFM multilayered Bi-2223 conductors for 13 kA current leads for CERN," Physica C: Superconductivity, Vol. 341-348, Part 4, 2513-2516, 2000.

4. Tsuda, M., A. Alamgir, Y. Ito, T. Harano, N. Harada, T. Hamajima, M. Ono, and H. Takano, "Influence of current distribution on conductor performance in coaxial multi-layer HTS conductor," IEEE Trans. Appl. Supercond., Vol. 12, No. 1, 1643-1646, 2002.
doi:10.1109/TASC.2002.1018721

5. Jobava, R., R. Heinrich, D. Pommerenke, W. Kalkner, and A. Gheonjian, "Efficient FDTD simulation of fields in coaxial cables with multi-layered insulation partially formed by dispersive layers of extremely high permittivity," Proc. Direct and Inv. Probl. of Elelectromag. and Accoustic Wave Theory 2002, 91-94, Tbilisi, Georgia, 2002.

6. Honjo, S., N. Hobara, Y. Takahashi, H. Hashimoto, K. Narita, and T. Yamada, "Efficient finite element analysis of electromagnetic properties in multi-layer superconducting power cables," IEEE Trans. Appl. Supercond., Vol. 13, No. 2, 1894-1897, 2003.
doi:10.1109/TASC.2003.812937

7. Maher, E., J. Abell, R. Chakalova, Y. Cheung, T. Button, and P. Tixador, "Multi-layer coated conductor cylinders: An alternative approach to superconducting coil fabrication," Supercond. Sci. Technol., Vol. 17, No. 12, 1440-1445, 2004.
doi:10.1088/0953-2048/17/12/015

8. Tang, X., H. Zhang, H. Su, Y. Shi, and X. Jiang, "Characteristics of thin film inductors using magnetic multilayered films with ceramic intermediate layers ," J. Magnetism and Magn. Materials, Vol. 294, No. 1, 29-52, 2005.

9. Jiang, Z., N. Amemiya, and M. Nakahata, "Numerical calculation of AC losses in multi-layer superconducting cables composed of coated conductors," Supercond. Sci. Technol., Vol. 21, No. 2, 025013, 2008.
doi:10.1088/0953-2048/21/2/025013

10. Zhuang, Y., B. Rejaei, H. Schellevis, M. Vroubel, and J. Burghartz, "Magnetic-multilayered interconnects featuring skin effect suppression," IEEE Electron. Dev. Lett., Vol. 29, No. 4, 319-321, 2008.
doi:10.1109/LED.2008.917630

11. Lesniewska, E. and R. Rajchert, "Application of the field-circuit method for the computation of measurement properties of current transformers with cores consisting of different magnetic materials ," IEEE Trans. Magn., Vol. 46, No. 10, 3778-3783, 2010.
doi:10.1109/TMAG.2010.2050068

12. Chong, Y., D. Gorlitz, S. Martens, M. Yau, S. Allende, J. Bachmann, and K. Nielsch, "Multilayered core/shell nanowires displaying two distinct magnetic swtching events," Adv. Materials., Vol. 22, No. 22, 2435-2439, 2010.
doi:10.1002/adma.200904321

13. Tellini, B. and M. Bologna, "Magnetic composite materials and arbitrary B-H relationships," IEEE Trans. Magn., Vol. 46, No. 12, 3967-3972, 2010.
doi:10.1109/TMAG.2010.2079332

14. Entezar, S., A. Nambar, H. Rahini, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure ," Journal of Electromagnetic Waves and Applications, Vol. 23, 171-182, 2009.
doi:10.1163/156939309787604427

15. Oraizi, H. and M. Afsahi, "Transmission line modelling and numerical simulation for the analysis and optimum design of metamaterial multilayer structures," Progress In Electromgnetics Research B, Vol. 14, 263-283, 2009.
doi:10.2528/PIERB09022506

16. Golmohammadi, S., Y. Rouhani, K. Abbasian, and A. Rostami, "Photonic bandgaps in quasiperiodic multilayer structures using Fourier transform of the refractive index profile," Progress In Electromgnetics Research B, Vol. 18, 311-325, 2009.
doi:10.2528/PIERB09091701

17. Faria, J., Electromagnetic Foundations of Electrical Engineering, Wiley, Chichester, UK, 2008.

18. Ametani, A., "Stratified earth effects on wave propagation: Frequency-dependent parameters," IEEE Trans. Power App. Syst., Vol. 93, No. 5, 1223-1239.

19. Deri, A., G. Tevan, A. Semlyen, and A. Castanheira, "The complex ground return plane: A simplified model for homogeneous and multi-layer earth return," IEEE Trans. Power App. Syst., Vol. 100, No. 8, 3686-3693, 1981.
doi:10.1109/TPAS.1981.317011

20. Neves, M. and J. Faria, "An efficient method for analyzing gradedindex optical fibers," Microwave and Opt. Tech. Letters, Vol. 6, No. 7, 426-431, 1993.
doi:10.1002/mop.4650060712

21. Neves, M. and J. Faria, "On the discretization process involved in the staircase approximation technique for analyzing radially inhomogeneous optical fibers ," Microwave and Opt. Tech. Letters, Vol. 6, No. 12, 710-715, 1993.
doi:10.1002/mop.4650061213

22. Simonyi, K., Foundations of Electrical Engineering, Pergamon Press, Oxford, UK, 1963.

23. Watson, G., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, UK, 1992.

24. Vujevic, S., V. Boras, and P. Sarajcev, "A novel algorithm for internal impedance computation of solid and tubular cylindrical conductors ," Int. Rev. Electrical Eng., Vol. 4, No. 6, 1418-1425, 2009.

25. Faria, J., "Electromagnetic field approach to the modeling of disk-capacitor devices," Microwave and Opt. Tech. Letters, Vol. 48, No. 8, 1467-1472, 2006.
doi:10.1002/mop.21733

26. Wylie, C., Advanced Engineering Mathematics, Mc-Graw-Hill, New York, USA, 1975.


© Copyright 2010 EMW Publishing. All Rights Reserved