Vol. 29
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-04-07
Modeling of the Human Exposure Inside a Random Plane Wave Field
By
Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011
Abstract
The specific absorption rate (SAR) of a human body exposed to a random field inside a reverberation chamber (RC) has been modeled. The exciting field is simulated using the plane wave integral representation which is numerically solved by a superposition of N plane waves randomly generated and repeated M times to reproduce the same statistics of an RC. An experimental validation, carried out by means of known saline solutions, confirms the reliability of this method. The obtained results at various frequencies for the adopted "Visible Human Body" and for some tissues well highlight the absorption percentage. The frequency behavior of the total SAR reveals the resonance of the human body around 75 MHz, in spite of the chaotic source.
Citation
Franco Moglie, Valter Mariani Primiani, and Anna Pia Pastore, "Modeling of the Human Exposure Inside a Random Plane Wave Field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506
References

1. Wang, J. and O. Fujiwara, "FDTD computation of temperature rise in the human head for portable telephones," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 8, 1528-1534, Aug. 1999.
doi:10.1109/22.780405

2. Omar, A. A., "Complex image solution of SAR inside a human head illuminated by a finite-length dipole," Progress In Electromagnetics Research B, Vol. 24, 223-239, 2010.
doi:10.2528/PIERB10062604

3. Caputa, K., M. Okoniewski, and M. A. Stuchly, "An algorithm for computations of the power deposition in human tissue," IEEE Antennas Propag. Mag., Vol. 41, No. 4, 102-107, 1999.
doi:10.1109/74.789742

4. Furse, C. M., J.-Y. Chen, and O. P. Gandhi, "The use of the frequency-dependent finite-difference time-domain method for induced current and SAR calculations for a heterogeneous model of the human body," IEEE Trans. Electromagn. Compat., Vol. 36, No. 2, 128-133, May 1994.
doi:10.1109/15.293278

5. Chou, H.-H., H.-T. Hsu, H.-T. Chou, K.-H. Liu, and F.-Y. Kuo, "Reduction of peak SAR in human head for handset applications with resistive sheets (R-cards)," Progress In Electromagnetics Research, Vol. 94, 281-296, 2009.
doi:10.2528/PIER09062702

6. Wang, J., O. Fujiwara, S. Kodera, and S. Watanabe, "FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30MHz to 3 GHz," Physics in Medicine and Biology, Vol. 51, No. 17, 4119, Aug. 2006.
doi:10.1088/0031-9155/51/17/001

7. Hirata, A., H. Sugiyama, and O. Fujiwara, "Estimation of core temperature elevation in humans and animals for whole-body averaged SAR," Progress In Electromagnetics Research, Vol. 99, 53-70, 2009.
doi:10.2528/PIER09101603

8. Piuzzi, E., P. Bernardi, M. Cavagnaro, S. Pisa, and J. C. Lin, "Analysis of adult and child exposure to uniform plane waves at mobile communication systems frequencies (900 MHz--3 GHz)," IEEE Trans. Electromagn. Compat., Vol. 53, No. 1, 38-47, Feb. 2011.
doi:10.1109/TEMC.2010.2053376

9. Capstick, M. H., N. Kuster, S. Kuehn, V. Berdinas-Torres, J. Ladbury, G. Koepke, D. McCormick, J. Gaugeri, and R. Melnick, "A radio frequency radiation reverberation chamber exposure system for rodents," URSI International Union of Radio Science, XXIX General Assembly 2008, Chicago, USA, Aug. 2008.

10. Hegge, N., C. Orlenius, and P. S. Kildal, "Development of reverberation chamber for accurate measurements of mobile phones and mobile phone antennas," IEE Antenna Measurements and SAR, AMS 2004, 55-58, May 2004.
doi:10.1049/ic:20040076

11. Wu, T., A. Hadjem, M.-F.Wong, A. Gati, O. Picon, and J. Wiart, "Whole-body new-born and young rats' exposure assessment in a reverberating chamber operating at 2.4 GHz," Physics in Medicine and Biology, Vol. 55, No. 6, 1619, 2010.
doi:10.1088/0031-9155/55/6/006

12. Biagi, P. F., L. Castellana, T. Maggipinto, G. Maggipinto, T. Ligonzo, L. Schiavulli, D. Loiacono, A. Ermini, M. Lasalvia, G. Perna, and V. Capozzi, "A reverberation chamber to investigate the possible effects of ``in vivo" exposure of rats to 1.8 GHz electromagnetic fields: A preliminary study," Progress In Electromagnetics Research, Vol. 94, 133-152, 2009.
doi:10.2528/PIER09061006

13. Lalléchère, S., S. Girard, D. Roux, P. Bonnet, F. Paladian, and A. Vian, "Mode stirred reverberation chamber (MSRC): A large and efficient tool to lead high frequency bioelectromagnetic in vitro experimentation," Progress In Electromagnetics Research B, Vol. 26, 257-290, 2010.
doi:10.2528/PIERB10062313

14. Jung, K. B., T. H. Kim, J. L. Kimb, H. J. Doh, Y. C. Chung, J. H. Cho, and J. K. Pack, "Development and validation of reverberation-chamber type whole-body exposure system for mobile-phone frequency," Electromagnetic Biology and Medicine, Vol. 27, No. 1, 73-82, Mar. 2008.
doi:10.1080/15368370701878895

15. Wang, J., O. Fujiwara, and T. Uda, "New approach to safety evaluation of human exposure to stochastically-varying electromagnetic fields," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 971-976, Nov. 2005.
doi:10.1109/TEMC.2005.853717

16. De Leo, R., F. Moglie, V. Mariani Primiani, and A. P. Pastore, "SAR numerical analysis of the whole human body exposed to a random field," 2009 IEEE International EMC Symposium, 81-86, Austin, Tx, USA, Aug. 2009.

17. [Online]. Available: http://www.nlm.nih.gov/research/visible/visible-human.html.

18. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 209-217, Aug. 1998.
doi:10.1109/15.709418

19. Moglie, F. and A. P. Pastore, "FDTD analysis of plane waves superposition to simulate susceptibility tests in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 195-202, Feb. 2006.
doi:10.1109/TEMC.2006.870793

20. Crawford, M. L. and G. H. Koepke, "Design, evaluation, and use of a reverberation chamber for performing electromagnetic susceptibility/vulnerability measurements," National Bureau of Standards Technical Note 1092, Tech. Rep., Apr. 1986.

21. Electromagnetic compatibility (EMC) --- Part 4: Testing and measurement techniques. Section 21: Reverberation chamber test methods, IEC 61000-4-21.

22. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, Oct. 1994.
doi:10.1006/jcph.1994.1159

23. Musso, L., V. Berat, F. Canavero, and B. Demoulin, "A plane wave Monte Carlo simulation method for reverberation chambers," EMC Europe 2002, International Symposium on Electromagnetic Compatibility, Vol. 1, 45-50, Sorrento, Italy, Sep. 2002.

24. Papoulis, A., Probability, Random Variables and Stochastic Processes, McGraw Hill, New York, 1965.

25. Mariani Primiani, V. and F. Moglie, "Numerical simulation of LOS and NLOS conditions for an antenna inside a reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2319-2331, 2010.
doi:10.1163/156939310793675600

26. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biolocical tissues: I, II, III," Phys. Med. Biol., Vol. 41, 2231-2293, May 1996.
doi:10.1088/0031-9155/41/11/001

27. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 8, 733-736, Aug. 1971.
doi:10.1109/TMTT.1971.1127617

28. Gradoni, G., F. Moglie, A. P. Pastore, and V. Mariani Primiani, "Numerical and experimental analysis of the field to enclosure coupling in reverberation chamber and comparison with anechoic chamber," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 203-211, Feb. 2006.
doi:10.1109/TEMC.2006.870805

29. Guide to The Expression of Uncertainty in Measurement, International Organization for Standardization, Switzerland, 1993.

30. Mariani Primiani, V., F. Moglie, and A. P. Pastore, "A metrology application of reverberation chambers: The current probe calibration," IEEE Trans. Electromagn. Compat., Vol. 49, No. 1, 114-122, Feb. 2007.
doi:10.1109/TEMC.2006.890217