PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 31 > pp. 45-66

OPTICAL ANTIREFLECTION OF A MEDIUM BY NANOSTRUCTURAL LAYERS

By A. S. Shalin

Full Article PDF (254 KB)

Abstract:
This work examines reflection of a light from a semi-infinite medium which is modified with an ordered monolayer of spherical nanoparticles placed on or under its surface. We derive analytical expressions for the electric fields within and outside such structures and verify them with help of strict numerical simulations. We show that nanoparticles layer acts as an imaginary zero-thickness surface having complicated non-Fresnel reflection coefficients with wavelength dependent phase shift. It is shown that such monolayers may reduce reflection relative to reflection from a pure substrate surface. We derive and analyse a zero-reflection condition in the simple intuitive form. It is shown that a single layer of nanocavities near the medium-vacuum interface may increase the transparency of a dielectric medium to values close to 100% in a wide wavelength range.

Citation:
A. S. Shalin, "Optical Antireflection of a Medium by Nanostructural Layers," Progress In Electromagnetics Research B, Vol. 31, 45-66, 2011.
doi:10.2528/PIERB11032509

References:
1. Visimax Technologies, Twinsburg, , Ohio, http://visimaxtechno-logies.com/anti-reflection-visiclear/.
doi:10.1126/science.283.5401.520

2. Walheim, S., E. Schaffer, J. Mlynek, and U. Steiner, "Surface-induced structure formation of polymer blends on patterned substrates," Science, Vol. 283, 520, 1999.
doi:10.1088/0957-4484/8/2/002

3. Lalanne, P. and G. M. Morris, "Antireflection behavior of silicon subwavelength periodic structures for visible light," Nanotechnology, Vol. 8, 53.

4. Koenig, G. A. and N. G. Niejelow, "Ultra low residual reflection, low stress lens coating,", United States Patent, No. US 7311938 B2, Dec. 25, 2007 .
doi:10.1038/nnano.2007.389

5. Huang, Y.-F., S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, and K.-H. Che, "Improved broadband and quasi-omnidirectional antire┬░ection properties with biomimetic silicon nanostructures," Nat. Nanotechnol., Vol. 2, 770, 2007.
doi:10.1039/b821967b

6. Li, Y., J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, "Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings," J. Mater. Chem., Vol. 19, 1806, 2009.
doi:10.1063/1.2767990

7. Wang, S., X. Z. Yu, and and H. T. Fan, "Simple lithographic approach for subwavelength structure antireflectio ," Appl. Phys. Lett., Vol. 91, 061105, 2007.

8. Gombert, A., W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, "Subwavelength-structured antireflective surfaces on glass," Appl. Phys. Lett., Vol. 351, 73, 1999.
doi:10.1002/adma.200601438

9. Wu, Z., J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, "Deformable antireflection coatings from polymer and nanoparticle multilayers," Adv. Mater., Vol. 18, 2699, 2006.
doi:10.1002/adma.200305617

10. Koo, H. Y., D. K. Yi, S. J. Yoo, and D.-Y. Kim, "Snowman-like array of colloidal dimers for antireflecting surfaces," Adv. Mater., Vol. 16, 274, 2004.

11. Ramm, A. G., "Electromagnetic wave scattering by a thin layer in which many small particles are embedded," Progress In Electromagnetics Research Letters, Vol. 19, 147-154, 2010.

12. Xi, J.-Q., F. M. Schubert, J. K. Kim, et al., "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photonics, Vol. 1, No. 176, 2007.

13. Garcia-Vidal, F. J., "Metamaterials-Towards the dark side," Nature Photonics, Vol. 2, No. 215, 2008.
doi:10.1070/QE2009v039n12ABEH014143

14. Shalin, A. S. and S. G. Moiseev, "Controlling interface reflectance by a monolayer of nanoparticles," Quantum Electron., Vol. 39, 1175, 2009.
doi:10.1134/S106377610710010X

15. Gadomskii, O. N. and A. S. Shalin, "Effect of optical blooming of a nanocrystal monolayer and the interface between two media," Journal of Experimental and Theoretical Physics, Vol. 105, No. 4, 761, 2007.

16. Yanagishita, T., K. Nishio, and H. Masuda, "Anti-reflection structures on lenses by nanoimprinting," Using Ordered Anodic Porous Alumina Appl. Phys. Express, Vol. 2, 022001, 2009.

17. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles, Cambridge University Press, Cambridge, 2002.
doi:10.1016/0040-6090(93)90468-5

18. Haarmans, M. T. and D. Bedeaux, "The polarizability and the optical properties of lattices and random distributions of small metal spheres on a substrate," Thin Solid Films, Vol. 224, 117, 1993.
doi:10.1002/andp.19083300302

19. Mie, G., "Beitrage zur Optik truber medien, speziell kolloidaler metallosungen," Ann. Phys., Vol. 25, 377, 1908.
doi:10.1134/S0021364009160073

20. Shalin, A. S., "Effect of the absolute transparency of an ordered nanocomposite," JETP Lett., Vol. 90, 257, 2009.

21. Shalin, A. S., "Broadband blooming of a medium modified by an incorporated layer of nanocavities," JETP Lett., Vol. 91, 637, 2010.

22. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, Acad. Press, New York, 1995.

23. Fleming, A. H. J., "A finite element method for composite scatterers," Progress In Electromagnetics Research, Vol. 2, 69-112, 1990.

24. Zhai, Y.-B. and T.-J. Cui, "Three-dimensional axisymmetric invisibility cloaks with arbitrary shapes in layered-medium background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.

25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, Artech House, Boston, 2000.
doi:10.1364/JOSAA.16.001131

26. Prather, D. W. and S. Shi, "Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements," Opt. Soc. Am. A, Vol. 16, 1131, 1999.
doi:10.2528/PIER09061102

27. Lin, Z., X. Zhang, and G. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.
doi:10.1364/OPEX.13.002668

28. Curry, A., G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy," Opt. Express, Vol. 13, 2668, 2005.
doi:10.1134/S0030400X09060228

29. Shalin, A. S. and S. G. Moiseev, "Optical properties of nanostructured layers on the surface of an underlying medium," Optics and Spectroscopy, Vol. 106, No. 6, 916, 2009.

30. Born, M. and E. Wolf, Principles of Optics, Pergamon, Pergamon, Oxford, 1969.
doi:10.2528/PIER08092803

31. Zhang, G.-H., M. Xia, and C. H. Chan, "Time domain integral equation approach for analysis of transient responses by metallic-dielectric composite bodies," Progress In Electromagnetics Research, Vol. 87, 1-14, 2008.
doi:10.2528/PIER04071301

32. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.

33. COMSOL Multiphysics 3.4, COMSOL AB, , Stockholm, Sweden; http://www.comsol.com/products/multiphysics/.

34. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
doi:10.1103/PhysRevB.71.134304

35. Evlyukhin, A. B. and S. I. Bozhevolnyi, "Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations," Phys. Rev. B., Vol. 71, 134304, 2005.
doi:10.1134/S0031918X06050024

36. Gadomskii, O. N. and A. S. Shalin, "Optical near-field resonances in the system of interacting nanoparticles," The Physics of Metals and Metallography, Vol. 101, No. 5, 425, 2006.
doi:10.1103/PhysRevB.44.7917

37. Poppe, G. P. M., C. M. J. Wijers, and A. Silfhout, "Ir spectroscopy of CO physisorbed on NaCl (100): Microscopic treatment," Phys. Rev. B, Vol. 44, No. 15, 7917-7929, 1991.
doi:10.1103/PhysRevB.46.7605

38. Wijers, C. M. J. and G. P. M. Poppe, "Microscopic treatment of the angular dependence of surface induced optical anisotropy," Phys. Rev. B, Vol. 46, No. 2, 7605-7620, 1992.

39. Milton, G. W., The Theory of Composites, Cambridge University Press, Cambridge, 2004.

40. Zaimidoroga, O. A., V. N. Samoilov, and I. E. Protsenko, "The problem of realization of a high refractive index and the optical properties of heterogeneous media," Phys. Part. Nucl., Vol. 33, 52, 2002.

41. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, New York, 1985.
doi:10.1364/OE.18.013063

42. Song, Y. M., H. J. Choi, J. S. Yu, and Y. T. Lee, "Design of highly transparent glasses with broadband antireflective subwavelength structures," Opt. Express, Vol. 18, No. 12, 13063, 2010.
doi:10.1364/OL.31.000601

43. Xi, J.-Q., J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, and J. S. Juneja, "Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods," Opt. Lett., Vol. 31, No. 5, 601, 2006.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.


© Copyright 2010 EMW Publishing. All Rights Reserved