Vol. 30

Latest Volume
All Volumes
All Issues
2011-05-19

Mutual Conversion of Tm_mn and Te_mn Waves by Periodic and Aperiodic Waveguide Filters Composed of Dense Metal-Strip Gratings

By Vladimir Tuz, Segiy L. Prosvirnin, and Vadim Kazanskiy
Progress In Electromagnetics Research B, Vol. 30, 313-335, 2011
doi:10.2528/PIERB11041802

Abstract

The mutual conversion of the TMmn and TEmn waves (m, n ≠ 0) in periodic and aperiodic (fractal-like) stratified waveguide structures composed of dense metal-strip gratings is studied. The stopbands and passbands conditions of Bloch waves, the reflection and transmission spectra of the periodic structure are examined versus the gratings parameters. Peculiarities of the wave localization, selfsimilarity and scalability of both reflected and transmitted spectra of the fractal-like structure are investigated. The appearance of additional peak multiplets in stopbands is revealed and a correlation of their properties with the parameter of grating filling is established.

Citation


Vladimir Tuz, Segiy L. Prosvirnin, and Vadim Kazanskiy, "Mutual Conversion of Tm_mn and Te_mn Waves by Periodic and Aperiodic Waveguide Filters Composed of Dense Metal-Strip Gratings," Progress In Electromagnetics Research B, Vol. 30, 313-335, 2011.
doi:10.2528/PIERB11041802
http://www.jpier.org/PIERB/pier.php?paper=11041802

References


    1. Born, M. and E. Wolf, "Principles of Optics," Pergamon Press, 1968.

    2. Yariv, A. and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley, New York, 1984.

    3. Sakoda, K., Optical Properties of Photonic Crystals, Springer, Berlin, 2001.

    4. Gomez, A., A. Vegas, M. A. Solano, and A. Lakhtakia, "On one- and two-dimensional electromagnetic band gap structures in rectangular waveguides at microwave frequencies," Electromagnetics, Vol. 25, No. 5, 437-460, 2005.
    doi:10.1080/02726340590957443

    5. Khalaj-Amirhosseini, M., "Microwave filters using waveguides filled by multi-layer dielectric," Progress In Electromagnetics Research, Vol. 66, 105-110, 2006.
    doi:10.2528/PIER06102502

    6. Elachi, C., "Waves in active and passive periodic structures: A review," Proceedings of the IEEE, Vol. 64, No. 12, 1666-1698, 1976.
    doi:10.1109/PROC.1976.10409

    7. Yang, F.-R., K.-P. Ma, Y. Qian, and T. Itoh, "A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure ," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2092-2098, 1999.
    doi:10.1109/22.798004

    8. Merrill, M., C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Electromagnetic scattering from a PBG material excited by an electric line source," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2105-2114, 1999.
    doi:10.1109/22.798006

    9. Kirilenko, A. A. and L. P. Mospan, "Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1419-1421, 2000.
    doi:10.1109/22.859492

    10. Kyriazidou, C. A., H. F. Contopanagos, and N. G. Alexopoulos, "Monolitic waveguide filters using printed photonic-bandgap materials," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 2, 297-307, 2001.
    doi:10.1109/22.903089

    11. Lytvynenko, L. M. and S. L. Prosvirnin, "Wave reflection by a periodic layered metamaterial --- Reflection by a semi-infinite layered structure," The European Physical Journal-Applied Physics, Vol. 46, 32608, 2009.
    doi:10.1051/epjap:2008128

    12. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
    doi:10.2528/PIER09011702

    13. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
    doi:10.2528/PIER09061506

    14. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
    doi:10.2528/PIER09060801

    15. Fallahzadeh, S., H. Bahrami, and M. Tayarani, "A novel dual-band bandstop waveguide filter using split ring resonators," Progress In Electromagnetics Research Letters, Vol. 12, 133-139, 2009.
    doi:10.2528/PIERL09103103

    16. Zhang, D. and J.-G. Ma, "The propagation and cutoff frequencies of the rectangular metallic waveguide partially filled with metamaterial multilayer slabs," Progress In Electromagnetics Research M, Vol. 9, 35-40, 2009.
    doi:10.2528/PIERM09082701

    17. Levin, L., Theory of Waveguides, Newnes-Butterworth, London, 1975.

    18. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks and Coupling Structures, Artech House, Dedham, Mass., 1980.

    19. Pozar, D. M., Microwave Engineering, Wiley, Toronto, 1998.

    20. Ghorbaninejad, H. and M. Khalaj-Amirhosseini, "Compact bandpass filters utilizing dielectric filled waveguides," Progress In Electromagnetics Research B, Vol. 7, 105-115, 2008.
    doi:10.2528/PIERB08031101

    21. Kinowski, D., M. Guglielmi, and A. G. Roederer, "Angular bandpass filters: An alternative viewpoint gives improved design flexibility," IEEE Trans. Antennas Propag., Vol. 43, No. 4, 390-395, 1995.
    doi:10.1109/8.376037

    22. Kazansky, V. B., V. V. Podloznyi, and V. V. Khardikov, "Analysis of scattering by a series of uniform elements by means of the Cayley-Hamilton theorem," Telecommunications and Radio Engineering, Vol. 54, No. 8--9, 28-39, 2000.

    23. Kazanskiy, V. B., V. R. Tuz, and V. V. Khardikov, "Quasiperiodic metal-dielectric structure as a multifunctional control system," Radioelectronics and Communications Systems, Vol. 45, No. 7, 38-46, 2002.

    24. Birbir, F., J. Shaker, and Y. M. M. Antar, "Chebishev bandpass spatial filter composed of strip gratings," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3707-3713, 2008.
    doi:10.1109/TAP.2008.2007286

    25. Sivov, A. N., "Electrodynamic theory of a dense plane grating of parallel conductors ," Radiotekh. Elektron., Vol. 6, No. 4, 483-495, 1961.

    26. Weinstein, L. A., "On the electrodynamic theory of grids," Elektronika Bol'shikh Moshchnostey, Vol. 2, 26-74, 1963.

    27. Tretyakov, S., Analitycal Modeling in Applied Electromagnetics, Artech House, Boston, London, 2003.

    28. Adonina, A. I. and V. V. Shcerbak, "Equivalent boundary conditions at a metal grating situated between two magnetic materials," Zh. Tekh. Fiz., Vol. 34, No. 2, 333-335, 1964.

    29. Jaggard, D. L. and X. Sun, "Reflection from fractal multilayers," Opt. Lett., Vol. 15, 1428-1430, 1990.
    doi:10.1364/OL.15.001428

    30. Lavrinenko, A. V., S. V. Zhukovsky, K. S. Sandomirskii, and S. V. Gaponenko, "Propagation of classical waves in non-periodic media: Scaling properties of an optical Cantor filter," Phys. Rev. E, Vol. 65, 036621, 2002.
    doi:10.1103/PhysRevE.65.036621

    31. Chiadini, F., V. Fiumara, I. Gallina, S. T. Johnson, and A. Scaglione, "Cantor dielectric filters in rectangular waveguides," Electromagnetics, Vol. 29, No. 8, 575-585, 2009.
    doi:10.1080/02726340903287315

    32. Tuz, V. R. and V. B. Kazanskiy, "Electromagnetic scattering by a quasiperiodic generalized multilayer Fibonacci structure with grates of magnetodielectric bars ," Waves in Random and Complex Media, Vol. 19, No. 3, 501-508, 2009.
    doi:10.1080/17455030902780445

    33. Tuz, V. R., "A peculiarity of localized mode transfiguration of a Cantor-like chiral multilayer," J. Opt. A: Pure Appl. Opt., Vol. 11, 125103, 2009.
    doi:10.1088/1464-4258/11/12/125103

    34. Ghosh, B., S. N. Sinha, and M. Kartikeyan, "Investigations on fractal frequency selective diaphragms in rectangular waveguide," International Journal of RF and Microwave Computer-Aided Engineering , Vol. 20, No. 2, 209-219, 2010.

    35. Lamb, H., "On the reflection and transmission of electric waves by a metallic grating," Proc. London Math. Soc., Ser. 1, Vol. 29, 523-544, 1898.

    36. Dickey, L. J., "High powers of matrices," ACM SIGAPL APL Quote Quad., Vol. 18, No. 2, 96-99, 1987.
    doi:10.1145/377719.55639

    37. Tuz, V. R. and V. B. Kazanskiy, "Periodicity defect influence on the electromagnetic properties of a sequence with bi-isotropic layers ," Progress In Electromagnetics Research B, Vol. 7, 299-307, 2008.
    doi:10.2528/PIERB08041101

    38. Vytovtov, K. A. and A. A. Bulgakov, "Analytical investigation method for electrodynamics properties of periodic structures with magnetic layers," Telecommunications and Radio Engineering, Vol. 65, No. 14, 1307-1321, 2006.
    doi:10.1615/TelecomRadEng.v65.i14.60

    39. Tuz, V. R. and V. B. Kazanskiy, "Depolarization properties of a periodic sequence of chiral and material layers," J. Opt. Soc. Am. A, Vol. 25, No. 11, 2704-2709, 2008.
    doi:10.1364/JOSAA.25.002704

    40. Tuz, V. R., M. Yu. Vidil, and S. L. Prosvirnin, "Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance ," J. Opt., Vol. 12, 095102, 2010.
    doi:10.1088/2040-8978/12/9/095102