Vol. 30

Latest Volume
All Volumes
All Issues

Mutual Conversion of Tm_mn and Te_mn Waves by Periodic and Aperiodic Waveguide Filters Composed of Dense Metal-Strip Gratings

By Vladimir Tuz, Segiy L. Prosvirnin, and Vadim Kazanskiy
Progress In Electromagnetics Research B, Vol. 30, 313-335, 2011


The mutual conversion of the TMmn and TEmn waves (m, n ≠ 0) in periodic and aperiodic (fractal-like) stratified waveguide structures composed of dense metal-strip gratings is studied. The stopbands and passbands conditions of Bloch waves, the reflection and transmission spectra of the periodic structure are examined versus the gratings parameters. Peculiarities of the wave localization, selfsimilarity and scalability of both reflected and transmitted spectra of the fractal-like structure are investigated. The appearance of additional peak multiplets in stopbands is revealed and a correlation of their properties with the parameter of grating filling is established.


Vladimir Tuz, Segiy L. Prosvirnin, and Vadim Kazanskiy, "Mutual Conversion of Tm_mn and Te_mn Waves by Periodic and Aperiodic Waveguide Filters Composed of Dense Metal-Strip Gratings," Progress In Electromagnetics Research B, Vol. 30, 313-335, 2011.


    1. Born, M. and E. Wolf, "Principles of Optics," Pergamon Press, 1968.

    2. Yariv, A. and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley, New York, 1984.

    3. Sakoda, K., Optical Properties of Photonic Crystals, Springer, Berlin, 2001.

    4. Gomez, A., A. Vegas, M. A. Solano, and A. Lakhtakia, "On one- and two-dimensional electromagnetic band gap structures in rectangular waveguides at microwave frequencies," Electromagnetics, Vol. 25, No. 5, 437-460, 2005.

    5. Khalaj-Amirhosseini, M., "Microwave filters using waveguides filled by multi-layer dielectric," Progress In Electromagnetics Research, Vol. 66, 105-110, 2006.

    6. Elachi, C., "Waves in active and passive periodic structures: A review," Proceedings of the IEEE, Vol. 64, No. 12, 1666-1698, 1976.

    7. Yang, F.-R., K.-P. Ma, Y. Qian, and T. Itoh, "A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure ," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2092-2098, 1999.

    8. Merrill, M., C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Electromagnetic scattering from a PBG material excited by an electric line source," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2105-2114, 1999.

    9. Kirilenko, A. A. and L. P. Mospan, "Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1419-1421, 2000.

    10. Kyriazidou, C. A., H. F. Contopanagos, and N. G. Alexopoulos, "Monolitic waveguide filters using printed photonic-bandgap materials," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 2, 297-307, 2001.

    11. Lytvynenko, L. M. and S. L. Prosvirnin, "Wave reflection by a periodic layered metamaterial --- Reflection by a semi-infinite layered structure," The European Physical Journal-Applied Physics, Vol. 46, 32608, 2009.

    12. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.

    13. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.

    14. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.

    15. Fallahzadeh, S., H. Bahrami, and M. Tayarani, "A novel dual-band bandstop waveguide filter using split ring resonators," Progress In Electromagnetics Research Letters, Vol. 12, 133-139, 2009.

    16. Zhang, D. and J.-G. Ma, "The propagation and cutoff frequencies of the rectangular metallic waveguide partially filled with metamaterial multilayer slabs," Progress In Electromagnetics Research M, Vol. 9, 35-40, 2009.

    17. Levin, L., Theory of Waveguides, Newnes-Butterworth, London, 1975.

    18. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks and Coupling Structures, Artech House, Dedham, Mass., 1980.

    19. Pozar, D. M., Microwave Engineering, Wiley, Toronto, 1998.

    20. Ghorbaninejad, H. and M. Khalaj-Amirhosseini, "Compact bandpass filters utilizing dielectric filled waveguides," Progress In Electromagnetics Research B, Vol. 7, 105-115, 2008.

    21. Kinowski, D., M. Guglielmi, and A. G. Roederer, "Angular bandpass filters: An alternative viewpoint gives improved design flexibility," IEEE Trans. Antennas Propag., Vol. 43, No. 4, 390-395, 1995.

    22. Kazansky, V. B., V. V. Podloznyi, and V. V. Khardikov, "Analysis of scattering by a series of uniform elements by means of the Cayley-Hamilton theorem," Telecommunications and Radio Engineering, Vol. 54, No. 8--9, 28-39, 2000.

    23. Kazanskiy, V. B., V. R. Tuz, and V. V. Khardikov, "Quasiperiodic metal-dielectric structure as a multifunctional control system," Radioelectronics and Communications Systems, Vol. 45, No. 7, 38-46, 2002.

    24. Birbir, F., J. Shaker, and Y. M. M. Antar, "Chebishev bandpass spatial filter composed of strip gratings," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3707-3713, 2008.

    25. Sivov, A. N., "Electrodynamic theory of a dense plane grating of parallel conductors ," Radiotekh. Elektron., Vol. 6, No. 4, 483-495, 1961.

    26. Weinstein, L. A., "On the electrodynamic theory of grids," Elektronika Bol'shikh Moshchnostey, Vol. 2, 26-74, 1963.

    27. Tretyakov, S., Analitycal Modeling in Applied Electromagnetics, Artech House, Boston, London, 2003.

    28. Adonina, A. I. and V. V. Shcerbak, "Equivalent boundary conditions at a metal grating situated between two magnetic materials," Zh. Tekh. Fiz., Vol. 34, No. 2, 333-335, 1964.

    29. Jaggard, D. L. and X. Sun, "Reflection from fractal multilayers," Opt. Lett., Vol. 15, 1428-1430, 1990.

    30. Lavrinenko, A. V., S. V. Zhukovsky, K. S. Sandomirskii, and S. V. Gaponenko, "Propagation of classical waves in non-periodic media: Scaling properties of an optical Cantor filter," Phys. Rev. E, Vol. 65, 036621, 2002.

    31. Chiadini, F., V. Fiumara, I. Gallina, S. T. Johnson, and A. Scaglione, "Cantor dielectric filters in rectangular waveguides," Electromagnetics, Vol. 29, No. 8, 575-585, 2009.

    32. Tuz, V. R. and V. B. Kazanskiy, "Electromagnetic scattering by a quasiperiodic generalized multilayer Fibonacci structure with grates of magnetodielectric bars ," Waves in Random and Complex Media, Vol. 19, No. 3, 501-508, 2009.

    33. Tuz, V. R., "A peculiarity of localized mode transfiguration of a Cantor-like chiral multilayer," J. Opt. A: Pure Appl. Opt., Vol. 11, 125103, 2009.

    34. Ghosh, B., S. N. Sinha, and M. Kartikeyan, "Investigations on fractal frequency selective diaphragms in rectangular waveguide," International Journal of RF and Microwave Computer-Aided Engineering , Vol. 20, No. 2, 209-219, 2010.

    35. Lamb, H., "On the reflection and transmission of electric waves by a metallic grating," Proc. London Math. Soc., Ser. 1, Vol. 29, 523-544, 1898.

    36. Dickey, L. J., "High powers of matrices," ACM SIGAPL APL Quote Quad., Vol. 18, No. 2, 96-99, 1987.

    37. Tuz, V. R. and V. B. Kazanskiy, "Periodicity defect influence on the electromagnetic properties of a sequence with bi-isotropic layers ," Progress In Electromagnetics Research B, Vol. 7, 299-307, 2008.

    38. Vytovtov, K. A. and A. A. Bulgakov, "Analytical investigation method for electrodynamics properties of periodic structures with magnetic layers," Telecommunications and Radio Engineering, Vol. 65, No. 14, 1307-1321, 2006.

    39. Tuz, V. R. and V. B. Kazanskiy, "Depolarization properties of a periodic sequence of chiral and material layers," J. Opt. Soc. Am. A, Vol. 25, No. 11, 2704-2709, 2008.

    40. Tuz, V. R., M. Yu. Vidil, and S. L. Prosvirnin, "Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance ," J. Opt., Vol. 12, 095102, 2010.