Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 32 > pp. 351-388


By F. Gluck

Full Article PDF (327 KB)

The magnetic field of an axially symmetric coil or magnetic material system can be computed by expansion of the central and remote zonal harmonics, using the Legendre polynomials. This method can be 100-1000 times faster than the more widely known elliptic integral method and is more general than the similar radial series expansion. We present the zonal harmonic method for field, scalar and vector potential calculation of circular current loops, of general axisymmetric coils and magnetic materials, and of special coils with rectangular cross section, with various source representations: currents, magnetic dipoles and equivalent magnetic charges. We discuss in detail the convergence properties of the zonal harmonic expansions, and we show the generalization of the method for special three-dimensional magnetic systems.

F. Gluck, "Axisymmetric Magnetic Field Calculation with Zonal Harmonic Expansion," Progress In Electromagnetics Research B, Vol. 32, 351-388, 2011.

1. Paszkowski, B., Electron Optics, London Eliffe Books, New York American Elsevier, 1968.

2. Szilágyi, M., Electron and Ion Optics, Plenum Press, New York and London, 1988.

3. Hawkes, P. W. and E. Kasper, Principles of Electron Optics, Vol. 1, Academic Press, Harcourt Brace Jovanovich, 1989.

4. Montgomery, D. B. and R. J. Weggel, Solenoid Magnet Design, Robert E. Krieger Publ. Comp., New York, 1980.

5. Saint-Jalmes, H., J. Taquin, and Y. Barjhoux, "Optimization of homogeneous electromagnetic coil systems: Application to whole-body NMR imaging magnets," Rev. Sci. Instrum., Vol. 52, 1501, 1981.

6. Williams, J. E. C., "Superconducting magnets for MRI," IEEE Trans. Nucl. Sci., Vol. 31, 994, 1984.

7. Sanger, P. A., "Present status of MRI magnets at Oxford," IEEE Trans. Magnetics, Vol. 21, 436, 1985.

8. Morad, R., et al., "Way of improving the stability and homogeneity of MRI magnets," IEEE Trans. Magnetics, Vol. 24, 1282, 1988.

9. Vetter, J., G. Ries, and T. Reichert, "A 4-tesla superconducting whole-body magnet for MR imaging and spectroscopy," IEEE Trans. Magnetics, Vol. 24, 1285, 1988.

10. Shimada, Y., et al., "Superconducting magnet with self-shield for whole body magnetic resonance imaging," IEEE Trans. Magnetics, Vol. 27, 1685, 1991.

11. Kraus, C., et al., "Final results from phase II of the Mainz neutrino mass search in tritium β decay," Eur. Phys. J. C, Vol. 40, 447, 2005.

12. Lobashev, V. M., "The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN," Nucl. Phys. A, Vol. 719, 153c, 2003.

13. Glück, F., et al., "The neutron decay retardation spectrometer aSPECT: Electromagnetic design and systematic effects," Eur. Phys. J. A, Vol. 23, 135, 2005.

14. Baessler, S., et al., "First measurements with the neutron decay spectrometer aSPECT," Eur. Phys. J. A, Vol. 38, 17, 2008.

15. Beck, M., et al., "WITCH: A recoil spectrometer for weak interaction and nuclear physics studies," Nucl. Instrum. Methods A, 503-567, 2003.

16. Friedag, P., Bahnverfolgungssimulationen für das WITCH experiment, Diploma thesis, University of Münster, 2008.

17. Angrik, J., et al., KATRIN design report 2004, FZKA Scientific Report 7090, Forschungszentrum Karlsruhe, 2005, http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf.

18. Maxwell, J. C., A Treatise on Electricity and Magnetism, Vol. 1, Clarendon Press, 1873.

19. Durand, E., Magnetostatique, Masson et Cie, Editeurs, Paris, 1968.

20. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, New York, 1999.

21. Smythe, W. R., Static and Dynamic Electricity, McGraw Hill Book Company, New York, 1968.

22. Kellogg, O. D., Foundations of Potential Theory, Springer Verlag, Berlin, 1967.

23. Garrett, M. W., "Axially symmetric systems for generating and measuring magnetic fields," J. Appl. Phys., Vol. 22, 1091, 1951.

24. Garrett, M. W., "The method of zonal harmonics," High Magnetic Fields, H. Kolm, et al. (eds.), John Wiley and Sons, 1962.

25. Garrett, M. W., Computer programs using zonal harmonics for magnetic properties of current systems with special reference to the IBM 7090, ORNL-3318, Oak Ridge National Laboratory, USA, 1962.

26. Garrett, M. W., "Thick cylindrical coil systems for strong magnetic fields with field or gradient homogeneities of the 6th to 20th order," J. Appl. Phys., Vol. 38, 2563, 1967.

27. Garrett, M. W., "Calculation of fields, forces, and mutual inductances of current systems by elliptic integrals," J. Appl. Phys., Vol. 34, 2567, 1963.

28. Franzen, W., "Generation of uniform magnetic fields by means of air-core coils," Rev. Sci. Instrum., Vol. 33, 933, 1962.

29. Marshall, H. L. and H. E. Weaver, "Application of the Garrett method to calculation of coil geometries for generating homogeneous magnetic fields in superconducting solenoids," J. Appl. Phys., Vol. 34, 3175, 1963.

30. Girard, B. and M. Sauzade, "Calcul des solenoides compenses du 6eme ordre a volume de bobinage minimum," Nucl. Instrum. Methods, Vol. 25, 269, 1964.

31. Kaminishi, K. and S. Nawata, "Practical method of improving the uniformity of magnetic fields generated by single and double Helmholtz coils," Rev. Sci. Instrum., Vol. 52, 447, 1981.

32. Glück, F., "Axisymmetric electric field calculation with zonal harmonic expansion," Progress In Electromagnetics Research B, Vol. 32, 319-350, 2011.

33. Flatt, B., Designstudien für das KATRIN Experiment, Diploma thesis, University of Mainz, 2001.

34. Thümmler, T., Entwicklung von Methoden zur Untergrun-dreduzierung am Mainzer Tritium-β-Spektrometer, Diploma thesis, University of Mainz, 2002.

35. Müller, B., Umbau des Mainzer Neutrinomassenexperiments und Untergrunduntersuchungen im Hinblick auf KATRIN, Diploma thesis, University of Mainz, 2002.

36. Essig, K., Untersuchungen zur Penningfalle zwischen den Spektrometern des KATRIN Experiments, Diploma thesis, University of Bonn, 2004.

37. Thümmler, T., Präzisionsüberwachung und Kalibration der Hochspannung für das KATRIN Experiment, Dissertation, University of Münster, 2007.

38. Pocanic, D., et al., "Nab: Measurement principles, apparatus and uncertainties," Nucl. Instrum. Methods A, Vol. 611, 211, 2009.

39. Dubbers, D., et al., "A clean, bright, and versatile source of neutron decay products," Nucl. Instrum. Methods A, Vol. 596, 238, 2008.

40. Valerius, K., Elektromagnetisches Design für das Hauptspektrometer des KATRIN Experiments, Diploma thesis, University of Bonn, 2004.

41. Valerius, K., Spectrometer-related background processes and their suppression in the KATRIN experiment, Dissertation, University of MÄunster, 2009.

42. Hugenberg, K., Design of the electrode system for the KATRIN main spectrometer, Diploma thesis, University of Münster, 2008.

43. Zacher, M., Electromagnetic design and field emission studies for the inner electrode system of the KATRIN main spectrometer, Diploma thesis, University of Münster, 2009.

44. Wandkowsky, N., Design and background simulations for the KATRIN main spectrometer and air coil system, Diploma thesis, Karlsruhe Institute of Technology, 2009.

45. Fränkle, F., Background investigations of the KATRIN Pre-spectrometer, Dissertation, Karlsruhe Institute of Technology, 2010.

46. Sturm, M., Bestimmung der Tritiumflussreduktion einer Tritium-Argon-Frostpumpe für das Neutrinomassenexperiment KATRIN, Diploma thesis, Karlsruhe Institute of Technology, 2007.

47. Groh, S., Untersuchung von UV-Laser induziertem Untergrund am KATRIN Vorspektrometer, Diploma thesis, Karlsruhe Institute of Technology, 2010.

48. Reimer, S., Ein elektrostatisches Dipolsystem zur Eliminierung von Ionen in der DPS2-F des KATRIN Experimentes, Diploma thesis, Karlsruhe Institute of Technology, 2009.

49. Hötzel, M., Berechnung von KATRIN Messspektren unter Einbeziehung der Eigenschaften der fensterlosen gasförmigen Tritiumquelle, Diploma thesis, Karlsruhe Institute of Technology, 2009.

50. Schwarz, J., Design zur Messung der elektro-optischen Eigen-schaften der differentiellen Pumpstrecke DPS2-F des KATRIN Experiments, Diploma thesis, Karlsruhe Institute of Technology, 2010.

51. Valerius, K., et al., "Prototype of an angular-selective photoelectron calibration source for the KATRIN-experiment," J. Inst., Vol. 6, P01002, 2011.

52. Lukic, S., et al., "Ion source for tests of ion behavior in the KATRIN beam line," Rev. Sci. Instrum., Vol. 82, 013303, 2011.

53. KATRIN homepage, Talks and Publications, Diploma and Ph.D. theses, http://www-ik.fzk.de/~katrin/publications/thesis.html.

54. Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, AG Prof. Dr. C. Weinheimer, http://www.unimuenster.de/Physik.KP/AGWeinheimer/Arbeiten-de.html.

55. Vöcking, S. Implementierung der multipole boundary element methode für das KATRIN-experiment, Diploma thesis, University of Münster, 2008.

56. Corona, T. J. Tools for electromagnetic field simulation in the KATRIN experiment, Master thesis, MIT, 2009.

57. Leiber, B. Non-axially symmetric field and trajectory calculations for the KATRIN experiment, Diploma thesis, Karlsruhe Institute of Technology, 2010.

58. Babutzka, M., et al., The Comprehensive Guide to KASSIOPEIA, Version 1.00.00, KATRIN internal report.

59. Cowan, E. W., Basic Electromagnetism, Academic Press, New York, 1968.

60. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, Dover Publications, Mineola, New York, 1962.

61. Wangsness, R. K., Electromagnetic Fields, John Wiley & Sons, New York, 1979.

62. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.

63. Ravaud, R. and G. Lemarqand, "Comparison of the Coulombian and Amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309, 2009.

64. Zisserman, A., R. Saunders, and J. Caldwell, "Analytic solutions for axisymmetric magnetostatic systems involving iron," IEEE Trans. Magnetics, Vol. 23, 3895, 1987.

65. Saunders, R., A. Zisserman, and C. J. McCauley, "The calculation of magnetostatic fields from axisymmetric conductors," J. Phys. D, Vol. 29, 533, 1996.

66. Ravaud, R., et al., "Mutual inductance and force exerted between thick coils," Progress In Electromagnetics Research, Vol. 102, 367, 2010.

67. Gardner, M. E., et al., "Production of a uniform magnetic field by means of an end-corrected solenoid," Rev. Sci. Instrum., Vol. 31, 929, 1960.

68. Andrew, E. R., I. Roberts, and R. C. Gupta, "Helmholtz-type coils of finite cross section," J. Sci. Instrum., Vol. 43, 936, 1966.

© Copyright 2010 EMW Publishing. All Rights Reserved