PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 31 > pp. 239-260

NUMERICAL SIMULATION OF NANOSCALE FINFET PHOTODETECTOR FOR OPTIMAL DETECTION OF BIOLOGICAL SIGNALS USING INTERPOLATING WAVELETS

By R. Ramesh, M. Madheswaran, and K. Kannan

Full Article PDF (328 KB)

Abstract:
The biosensor design for sensing of biological signals is highly complex for accurate detection. Optimal detection of biological signals is necessary for distinguishing different tissues. This paper proposes a threshold-based detection technique which provides significant improvement in FinFET optical biosensor performance using wavelet coefficients. It uses a simple maximum likelihood (ML) function for detecting the threshold values. In this method, we have considered the different layers of body tissue as a turbid medium. To the best of our knowledge, this method is the first of its kind for classifying different tissues using threshold value of optical signals obtained from the surface potential variations of nanoscale FinFET illuminated by laser source of different wavelengths. By using this method, the point to point variations in tissue composition and structural variations in healthy and diseased tissues could be identified. The results obtained are used to examine the performance of the device for its suitable use as a nanoscale sensor.

Citation:
R. Ramesh, M. Madheswaran, and K. Kannan, "Numerical Simulation of Nanoscale Finfet Photodetector for Optimal Detection of Biological Signals Using Interpolating Wavelets," Progress In Electromagnetics Research B, Vol. 31, 239-260, 2011.
doi:10.2528/PIERB11042505

References:
1., "http://www.cancer.org/Research/CancerFactsFigures/CancerFa-ctsFigures/cancer-facts-and-figures-2010,".

2. Srinivasan, R., D. Kumar, and M. Singh, "Optical characterization and imaging of biological tissues," Current Science, Vol. 87, 218-227, 2004.
doi:10.2528/PIER10061001

3. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection ," Progress In Electromagentic Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10071002

4. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagentic Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIERB09080505

5. O'Halloran, M., R. C. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagentic Research B, Vol. 18, 1-24, 2009.
doi:10.1109/3.64355

6. Wilson, B. C. and S. L. Jacques, "Optical reflectance and transmittance of tissues: Principles and applications," IEEE J. Quantum Electron., Vol. 26, 2186-2199, 1990.
doi:10.1109/10.121651

7. Cui, W. and L. E. Ostrander, "The relationship of surface re┬░ectance measurements to optical properties of layered biological media ," IEEE Trans. Biomed. Eng., Vol. 39, 194-201, 1992.

8. Singh, M. and S. Chako, "Monte Carlo simulation of laser light scattering in mammalian organs," Current Science, Vol. 43, 1015-1019, 1997.
doi:10.1007/BF02513300

9. Chacko, S. and M. Singh, "Multi-layer imaging of human organs by measurement of laser backscattered radiation," Med. Biol. Eng. Comput., Vol. 37, 278-284, 1999.

10. Kumar, D., S. Chacko, and M. Singh, "Monte Carlo simulation of photon scattering in biological tissue models," Indian J. Biochem. Biophys., Vol. 36, 330-336, 1999.
doi:10.1088/1742-6596/178/1/012047

11. Warncke, D., E. Lewis, S. Lochmann, and M. Leahy, "A neural network based approach for determination of opticalscattering and absorption coe┬▒cients in biological tissue," Journal of Physics Conference Series, Vol. 178, 012047, 2009.

12. Chakrabarti, P., S. Kumar, P. Rout, and B. G. Rappai, "A proposed MISFET photodetector," Proceeding 3rd Asia Pacific Microwave Conference, 575-578, 1990.

13. Kabeer, M., K. Gowri, and V. Rajamani, "Three dimensional modeling and simulation of a nano MISFET photodetector," Journal of Optoelectronics and Advanced Materials, Vol. 9, No. 9, 2879-2885, 2007.
doi:10.1109/TED.2002.801263

14. Pei, G., J. Kedzierski, P. Oldiges, M. Ieong, and V. Chin-Chaun Kan, "FinFET design considerations based on 3-D simulation and analytical modeling," IEEE Trans. Electron. Devices, Vol. 49, No. 8, 1411-1419, 2002.
doi:10.1109/TED.2007.902415

15. El Hamid, H. A., J. R. Guitart, V. Kilchytska, D. Flandre, and B. Iniguez, "A 3-D analytical physically based model for the subthreshold swing in undoped trigate FinFETs ," IEEE Trans. Electron Devices, Vol. 54, No. 9, 2487-2496, 2007.
doi:10.1109/TED.2007.893808

16. Yang, W., Z. Yu, and L. Tian, "Scaling theory for FinFETs based on 3-D effects investigation," IEEE Trans. Electron Devices , Vol. 54, No. 5, 1140-1147, 2007.
doi:10.1016/j.sse.2005.04.017

17. Shao, X. and Z. Yu, "Nanoscale FinFET simulation: A quasi-3D quantum mechanical model using NEGF," Solid-State Electronics, Vol. 49, 1435-1445, 2005.
doi:10.1016/j.sse.2006.03.018

18. De Marchi, L., F. Franze, and E. Baravelli, "Wavelet-based adaptive mesh generation for device simulation," Solid-State Electronics, Vol. 50, 650-659, 2006.
doi:10.1109/22.491023

19. Krumholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, 555-571, 1996.
doi:10.1109/75.761672

20. Tentzeris, M. and J. Harvey, "Time adaptive time-domain techniques for the design of microwave circuits," IEEE Microwave Guided Wave Lett., Vol. 9, 96-99, 1999.
doi:10.1109/22.842020

21. Toupikov, M. and G. Pan, "On nonlinear modeling of microwave devices using interpolating wavelets," IEEE Trans. Microwave Theory and Tech., Vol. 48, 500-509, 2000.
doi:10.1137/S1064827597316278

22. Holmstron, M., "Solving hyperbolic PDE's using interpolating wavelets," SIAM J. Sci. Comp., Vol. 21, 405-420, 1999.

23. Ramesh, R., M. Madheswaran, and K. Kannan, "Optical effects on the characteristics of a nanoscale FinFET," Progress In Electromagentic Research B, Vol. 21, 235-255, 2010.
doi:10.1109/ICTEL.2010.5478870

24. Moradi, H., M. Falahpour, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, "BER analysis of optical wireless signals through lognormal fading channels with perfect CSI," 17th International Conference on Telecommunications, 493-497, 2010.
doi:10.1109/TCOMM.2003.815052

25. Zhu, X. and J. M. Kahn, "Performance bounds for coded free-space optical communications through atmospheric turbulence channels," IEEE Trans. on Communications, Vol. 51, No. 8, 1233-1239, 2003.
doi:10.1109/TCOMM.2002.800829

26. Zhu, X. and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. on Communications, Vol. 50, No. 8, 1293-1300, 2002.
doi:10.1109/TWC.2008.061002

27. Letzepis, N., I. Holland, and W. Cowley, "The Gaussian free space optical MIMO channel with Q-ary pulse position modulation," IEEE Trans. on Wireless Communications, Vol. 7, No. 5, 1744-1753, 2008.


© Copyright 2010 EMW Publishing. All Rights Reserved