PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 32 > pp. 217-242

UNIFIED EFFICIENT FUNDAMENTAL ADI-FDTD SCHEMES FOR LOSSY MEDIA

By D. Y. Heh and E. L. Tan

Full Article PDF (669 KB)

Abstract:
This paper presents the unified efficient fundamental alternating-direction-implicit finite-difference time-domain (ADI-FDTD) schemes for lossy media. The schemes presented include averaging, forward-forward, forward-backward and novel exponential time differencing schemes. Unifications of these schemes in both conventional and efficient fundamental forms of source-incorporated ADI-FDTD are provided. In the latter, they are formulated in the simplest, most concise, most efficient, and most fundamental form of ADI-FDTD. The unified update equations and implementation of the efficient fundamental ADI-FDTD schemes are provided. Such efficient fundamental schemes have substantially less right-hand-side update coefficients and field variables compared to the conventional ADI-FDTD schemes. Thus, they feature higher efficiency with reduced memory indexing and arithmetic operations. Other aspects such as field and parameter memory arrays, perfect electric conductor and perfect magnetic conductor implementations are also discussed. Numerical results in the realm of CPU time saving, asymmetry and numerical errors as well as specific absorption rate (SAR) of human skin are presented.

Citation:
D. Y. Heh and E. L. Tan, "Unified Efficient Fundamental Adi-FDTD Schemes for Lossy Media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.
doi:10.2528/PIERB11051801

References:
1. Taflove, F. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 2005.

2. Namiki, T., "3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, Oct. 2000.
doi:10.1109/22.873904

3. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007

4. Chen, C. C.-P., T.-W. Lee, N. Murugesan, and S. C. Hagness, Generalized FDTD-ADI: An unconditionally stable full-wave Maxwell's equations solver for VLSI interconnect modeling, IEEE/ACM Int. Conf. on Computer Aided Design, 156-163, San Jose, CA, USA, Nov. 2000.

5. Garcia, S. G., T. W. Lee, and S. C. Hagness, "On the accuracy of the ADI-FDTD method," IEEE Antennas Wireless Propagat. Lett., Vol. 1, No. 1, 31-34, 2002.
doi:10.1109/LAWP.2002.802583

6. Fu, W. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. Antennas Propagat., Vol. 55, No. 4, 1095-1102, Apr. 2007.
doi:10.1109/TAP.2007.893378

7. Yuan, C. and Z. Chen, Towards accurate time-domain simulation of highly conductive materials, 2002 IEEE MTT-S Int. Microwave Symp. Dig., 1135-1138, Seattle, WA, USA, Jun. 2002.

8. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "The 1D ADI-FDTD method in lossy media," IEEE Antennas Wireless Propagat. Lett., Vol. 7, 477-480, 2008.
doi:10.1109/LAWP.2008.2000482

9. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "Analysis of two alternative ADI-FDTD formulations for transverse-electric waves in lossy materials," IEEE Trans. Antennas Propagat., Vol. 57, No. 7, 2047-2054, Jul. 2009.
doi:10.1109/TAP.2009.2021927

10. Heh, D. Y. and E. L. Tan, "Lyapunov and matrix norm stability analysis of ADI-FDTD schemes for doubly lossy media," IEEE Trans. Antennas Propagat., Vol. 59, No. 3, 979-986, Mar. 2011.
doi:10.1109/TAP.2010.2103026

11. Tan, E. L., "Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 1, 7-9, Jan. 2007.
doi:10.1109/LMWC.2006.887239

12. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propagat., Vol. 56, No. 1, 170-177, Jan. 2008.
doi:10.1109/TAP.2007.913089

13. Heh, D. Y. and E. L. Tan, Efficient implementation of 3-D ADI-FDTD method for lossy media, 2009 IEEE MTT-S Int. Microwave Symp. Dig., 313-316, Boston, Massachusetts, USA, Jun. 2009.

14. Holland, R., L. Simpson, and K. S. Kunz, "Finite-difference analysis of EMP coupling to lossy dielectric structures," IEEE Trans. Electromagn. Compat., Vol. 22, No. 3, 203-209, Aug. 1980.
doi:10.1109/TEMC.1980.303880

15. Petropoulos, P. G., "Analysis of exponential time-differencing for FDTD in lossy dielectrics," IEEE Trans. Antennas Propagat., Vol. 45, No. 6, 1054-1057, Jun. 1997.
doi:10.1109/8.585755

16. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009.
doi:10.2528/PIERB09082802

17. Garcia, S. G., A. R. Bretones, R. G. Martin, and S. C. Hagness, "Accurate implementation of current sources in the ADI-FDTD scheme," IEEE Antennas Wireless Propagat. Lett., Vol. 3, 141-144, 2004.
doi:10.1109/LAWP.2004.831078

18. Donderici, B. and F. L. Teixeira, "Symmetric source implementation for the ADI-FDTD method," IEEE Trans. Antennas Propagat., Vol. 53, No. 4, 1562-1565, Apr. 2005.
doi:10.1109/TAP.2005.844403

19. Tan, E. L., "Concise current source implementation for efficient 3-D ADI-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 11, 748-750, Nov. 2007.

20. Chen, J. and J. Wang, "PEC condition implementation for the ADI-FDTD method," Microw. Opt. Technol. Lett., Vol. 49, No. 3, 526-530, 2007.
doi:10.1002/mop.22185

21. Rojavin, M. A. and M. C. Ziskin, "Medical application of millimeter waves," Q. J. Med., Vol. 91, No. 1, 57-66, Jan. 1998.

22. Alekseev, S. I. and M. C. Ziskin, "Millimeter-wave absorption by cutaneous blood vessels: A computational study," IEEE Trans. Biomed. Engineering, Vol. 56, No. 10, 2380-2388, Oct. 2009.
doi:10.1109/TBME.2009.2024692

23. Liu, S. and S. D. Gedney, "Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method," IEEE Microw. Guided Wave Lett., Vol. 10, 261-263, Jul. 2000.

24. Rubio, R. G., S. G. Garcia, A. R. Bretones, and R. G. Martin, "Crank-Nicolson reformulation of ADI-FDTD PML extensions," IEEE Antennas Wireless Propagat. Lett., Vol. 5, No. 1, 357-360, 2006.
doi:10.1109/LAWP.2006.880684

25. Tay, W. C. and E. L. Tan, Split-field PML implementation for the efficient fundamental ADI-FDTD method, 2009 Asia Pacific Microw. Conf., 1553-1556, Singapore, Dec. 2009.

26. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetic Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605


© Copyright 2010 EMW Publishing. All Rights Reserved