Vol. 34
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-08-30
Enhanced Polarization in Tadpole-Shaped (Ni, Al)/AlN Nanoparticles and Microwave Absorption at High Frequencies
By
Progress In Electromagnetics Research B, Vol. 34, 31-46, 2011
Abstract
Tadpole-shaped (Ni, Al)/AlN nanoparticles were synthesized via evaporating Ni-Al alloy in a mixed atmosphere of N2 and H2. As a counterpart, the spherical-shaped (Ni, Al)/Al2O3 The electromagnetic parameters of as-made nanoparticles/paraffin composites were then investigated in the frequency range of 2-18 GHz. Excellent microwave absorption can be obtained for the tadpole-shaped (Ni, Al)/AlN-paraffin composite at high frequencies and in a thin layer, which is thought to be the result of the enhanced polarization in the anisotropic tadpole-shaped nanoparticles. With the increasing of the composite thickness, the frequency of effective reflection loss shifts towards lower frequencies due to an improved impedance match and absorption.
Citation
Hao Huang, Fang Hong Xue, Bo Lu, Fei Wang, Xing Dong, and Won Jo Park, "Enhanced Polarization in Tadpole-Shaped (Ni, Al)/AlN Nanoparticles and Microwave Absorption at High Frequencies," Progress In Electromagnetics Research B, Vol. 34, 31-46, 2011.
doi:10.2528/PIERB11071101
References

1. Wallace, J. L., "Broadband magnetic microwave absorbers: Fundamental limitations," IEEE Trans. Magn., Vol. 29, 4209-4214, 1993.
doi:10.1109/20.280862

2. Liu, X. G., D. Y. Geng, H. Meng, P. J. Shang, and Z. D. Zhang, "Microwave-absorption properties of ZnO-coated iron nanocapsules," Appl. Phys. Lett., Vol. 92, 173117, 2008.
doi:10.1063/1.2919098

3. Zhen, L., Y. X. Gong, J. T. Jiang, C. Y. Xu, W. Z. Shao, P. Liu, and J. Tang, "Synthesis of CoFe/Al2O3 composite nanoparticles as he impedance matching layer of wideband multilayer absorber," J. Appl. Phys., Vol. 109, 07A332, 2011.
doi:10.1063/1.3564939

4. Che, R. C., L. M. Peng, X. F. Duan, Q. Chen, and X. L. Liang, "Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes," Adv. Mater., Vol. 16, 401-405, 2004.
doi:10.1002/adma.200306460

5. Bayrakdar, H., "Complex permittivity, complex permeability and microwave absorption properties of ferrite-paraffin polymer composites," J. Magn. Magn. Mater., Vol. 323, 1882-1885, 2011.
doi:10.1016/j.jmmm.2011.02.030

6. Rajesh, S., V. S. Nisa, K. P. Murali, and R. Ratheesh, "Microwave dielectric properties of PTFE/rutile nanocomposites," J. Alloys Compd., Vol. 477, 677-682, 2009.
doi:10.1016/j.jallcom.2008.10.092

7. Kim, J. H. and S. S. Kim, "Microwave absorbing properties of Agcoated Ni-Zn ferrite microspheres prepared by electroless plating," J. Alloys Compd., Vol. 509, 4399-4403, 2011.
doi:10.1016/j.jallcom.2011.01.050

8. Paula, R. K., K. H. Leeb, B. T. Lee, and H. Y. Song, "Formation of AlN nanowires using Al powder," Mater. Chem. Phys., Vol. 112, 562-565, 2008.
doi:10.1016/j.matchemphys.2008.05.096

9. Ambacher, O., "Growth and applications of group III-nitrides," J. Phys. D: Appl. Phys., Vol. 31, 2653-2710, 1998.
doi:10.1088/0022-3727/31/20/001

10. Yin, L. W., Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, and D. Golberg, "Growth and field emission of hierarchical single-crystalline wurtzite AlN nanoarchitectures," Adv. Mater., Vol. 17, 110-114, 2005.
doi:10.1002/adma.200400504

11. Liu, C., Z. Hu, Q. Wu, X. Z. Wang, Y. Chen, H. Sang, J. M. Zhu, S. Z. Deng, and N. S. Xu, "Vapor-solid growth and characterization of aluminum nitride nanocones," J. Am. Chem. Soc., Vol. 127, 1318-1322, 2005.
doi:10.1021/ja045682v

12. Shen, L. H., T. M. Cheng, L. J. Wu, X. F. Li, and Q. L. Cui, "Synthesis and optical properties of aluminum nitride nanowires prepared by arc discharge method," J. Alloys Compd., Vol. 465, 562-566, 2008.
doi:10.1016/j.jallcom.2007.11.007

13. González, M. and A. Ibarra, "The dielectric behaviour of commercial polycrystalline aluminium nitride," Diamond Relat. Mater., Vol. 9, 467-471, 2000.
doi:10.1016/S0925-9635(99)00200-9

14. Mikijelj, B., D. K. Abe, and R. Hutcheon, "AlN-based lossy ceramics for high average power microwave devices: Performance-property correlation," J. Eur. Ceram. Soc., Vol. 23, 2705-2709, 2003.
doi:10.1016/S0955-2219(03)00146-8

15. Dong, X. L., Z. D. Zhang, X. G. Zhao, Y. C. Chuang, S. R. Jin, and W. M. Sun, "Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane," J. Mater. Res., Vol. 14, 1782-1790, 1999.
doi:10.1557/JMR.1999.0240

16. Yusoff, A. N., M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, "Electromagnetic and absorption properties of some microwave absorbers," J. Appl. Phys., Vol. 92, 876-882, 2002.
doi:10.1063/1.1489092

17. Thapa, R., B. Saha, and K. K. Chattopadhyay, "Synthesis of cubic aluminum nitride by VLS technique using gold chloride as a catalyst and its optical and field emission properties," J. Alloys Compd., Vol. 475, 373-377, 2009.
doi:10.1016/j.jallcom.2008.07.020

18. Joo, H. U., B. K. Min, and W. S. Jung, "Characteristics of aluminum nitride nanowhiskers grown via the vapor-liquid-solid mechanism," Physica E, Vol. 40, 833-835, 2008.
doi:10.1016/j.physe.2007.10.051

19. Petrov, I., E. Mojab, R. C. Powell, and J. E. Greene, "Synthesis metastable epitaxial zinc-blende-structure AlN by solid-state reaction," Appl. Phys. Lett., Vol. 60, 2491-2493, 1992.
doi:10.1063/1.106943

20. Wehner, A., Y. Jeliazova, and R. Franchy, "Growth and oxidation of a Ni3Al alloy on Ni(1 0 0)," Surf Sci., Vol. 531, 287-294, 2003.
doi:10.1016/S0039-6028(03)00516-8

21. Berzina, B., L. Trinkler, D. Jakimovica, V. Korsaks, J. Grabis, I. Steins, E. Palcevskis, S. Bellucci, L. C. Chen, S. Chattopadhyay, and K. H. Chen, "Spectral characterization of bulk and nanostructured aluminum nitride," J. Nanophoton., Vol. 3, 031950, 2009.
doi:10.1117/1.3276803

22. Youngman, R. A. and J. H. Harris, "Luminescence studies of oxygen-related defects in aluminum nitride," J. Am. Ceram. Soc., Vol. 73, 3238-3246, 1990.
doi:10.1111/j.1151-2916.1990.tb06444.x

23. Lu, B., X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, "Microwave absorption properties of the core/shell-type iron and nickel nanoparticles," J. Magn. Magn. Mater., Vol. 320, 1106-1111, 2008.
doi:10.1016/j.jmmm.2007.10.030

24. Gong, Y. X., L. Zhen, J. T. Jiang, C. Y. Xu, and W. Z. Shao, "Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance," J. Magn. Magn. Mater., Vol. 321, 3702-3705, 2009.
doi:10.1016/j.jmmm.2009.07.019

25. Yan, S. J., L. Zhen, C. Y. Xu, J. T. Jiang, and W. Z. Shao, "Microwave absorption properties of FeNi3 submicrometre spheres and SiO2@FeNi3 core-shell structures," J. Phys. D: Appl. Phys., Vol. 43, 245003, 2010.
doi:10.1088/0022-3727/43/24/245003

26. Banerjee, R., P. Ayyub, G. B. Thompson, R. Chandra, P. Taneja, and H. L. Fraser, "Microstructure and magnetic, transport, and optical properties of ordered and disordered Ni-25Al alloy thin films," Thin Solid Films, Vol. 441, 255-260, 2003.
doi:10.1016/S0040-6090(03)00879-4

27. He, J. H., R. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen, and Z. L. Wang, "Aligned AlN nanorods with multi-tipped surfaces --- Growth, field-emission, and cathodoluminescence properties," Adv. Mater., Vol. 18, 650-654, 2006.
doi:10.1002/adma.200501803

28. Michaelson, H. B., "The work function of the elements and its periodicity," J. Appl. Phys., Vol. 48, 4729-4733, 1977.
doi:10.1063/1.323539

29. Chew, W. C. and P. N. Sen, "Dielectric enhancement due to electrochemical double layer: Thin double layer approximation," J. Chem. Phys., Vol. 77, 4683-4693, 1982.
doi:10.1063/1.444369

30. Muñoz, R. D., A. L. Shluger, and G. Bersuker, "Ab initio study of charge trapping and dielectric properties of Ti-doped HfO2," Phys. Rev. B, Vol. 79, 035306, 2009.
doi:10.1103/PhysRevB.79.035306

31. Kasu, M. and N. Kobayashi, "Large and stable field-emission current from heavily Si-doped AlN grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett., Vol. 76, 2910-2912, 2000.
doi:10.1063/1.126514

32. Ravindran, R., K. Gangopadhyay, S. Gangopadhyay, N. Mehta, and N. Biswas, "Permittivity enhancement of aluminum oxide thin films with the addition of silver nanoparticles," Appl. Phys. Lett., Vol. 89, 263511, 2006.
doi:10.1063/1.2425010

33. Thakur, A., P. Thakur, and J. H. Hsu, "Novel magnetodielectric nanomaterials with matching permeability and permittivity for the very-high-frequency applications," Scripta. Mater., Vol. 64, 205-208, 2011.
doi:10.1016/j.scriptamat.2010.09.045

34. Zhao, H. and H. H. Baua, "The polarization of a nanoparticle surrounded by a thick electric double layer," J. Colloid Interf. Sci., Vol. 333, 663-671, 2009.
doi:10.1016/j.jcis.2009.01.056

35. Zhou, R. H., H. C. Changa, V. Protasenko, M. Kuno, A. K. Singh, D. Jena, and H. L. Xing, "CdSe nanowires with illumination-enhanced conductivity: Induced dipoles, dielectrophoretic assembly, and field-sensitive emission," J. Appl. Phys., Vol. 101, 73704, 2007.
doi:10.1063/1.2714670

36. Seo, D.-W., H.-J. Kim, K.-U Bae, and N.-H. Myung, "The effect of fiber orientation distribution on the effective permittivity of fiber composite materials," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2419-2430, 2010.
doi:10.1163/156939310793675835

37. Chen, Y. J., F. Zhang, G. G. Zhao, X. Y. Fang, H. B. Jin, P. Gao, C. L. Zhu, M. S. Cao, and G. Xiao, "Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods," J. Phys. Chem. C, Vol. 114, 9239-9244, 2010.
doi:10.1021/jp912178q

38. Wu, M. Z., Y. D. Zhang, S. Hui, T. D. Xiao, S. H. Ge, W. A. Hines, J. I. Budnick, and G. W. Taylor, "Microwave magnetic properties of Co50/(SiO2)50 nanoparticles," Appl. Phys. Lett., Vol. 80, 4404-4406, 2002.
doi:10.1063/1.1484248

39. Mercier, D., J.-C. S. Lévy, G. Viau, F. Fiévet-Vincent, F. Fiévet, P. Toneguzzo, and O. Acher, "Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles," Phys. Rev. B, Vol. 62, 532-544, 2000.
doi:10.1103/PhysRevB.62.532

40. Naito, Y. and K. Suetake, "Application of ferrite to electromagnetic wave absorber and its characteristics," IEEE T. Microw. Theory, Vol. 19, 65-72, 1971.
doi:10.1109/TMTT.1971.1127446

41. Inui, T., K. Konishi, and K. Oda, "Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites," IEEE T. Magn., Vol. 35, 3148-3150, 1999.
doi:10.1109/20.801110

42. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE T. Microw. Theory, 2011, Doi: 10.1109/TMTT.2011.2160198.