Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 205-235


By F. De Paulis, M. H. Nisanci, M. Y. Koledintseva, J. L. Drewniak, and A. Orlandi

Full Article PDF (531 KB)

The paper gives an analytical transition from the Maxwell Garnett model of a biphasic mixture (dielectric host and dielectric or conducting inclusions) to the parameters of a single- or double-term Debye representation of the material frequency response. The paper is focused on modeling biphasic mixtures containing cylindrical inclusions. This is practically important for engineering electromagnetic absorbing composite materials, for example, containing carbon fibers. The causal Debye representation is important for incorporation of a composite material in numerical electromagnetic codes, especially time-domain techniques, such as the finite-difference time-domain (FDTD) technique. The equations derived in this paper are different for different types of host and inclusion materials. The corresponding cases for the typical combinations of host and inclusion materials are considered, and examples are provided. The difference between the original Maxwell Garnett model and the derived Debye model is quantified for validating the proposed analytical derivation. It is demonstrated that in some cases the derived equivalent Debye model well approximates the frequency characteristics of the homogeneous model based on the MGA, and in some cases there is an exact match between Debye and Maxwell Garnett models.

F. De Paulis, M. H. Nisanci, M. Y. Koledintseva, J. L. Drewniak, and A. Orlandi, "Homogenized Permittivity of Composites with Aligned Cylindrical Inclusions for Causal Electromagnetic Simulations," Progress In Electromagnetics Research B, Vol. 37, 205-235, 2012.

1. Chou, T.-C., M.-H. Tsai, and C.-Y. Chen, "A low insertion loss and high selectivity UWB bandpass filter using composite right/left-handed material," Progress In Electromagnetics Research C, Vol. 17, 163-172, 2010.

2. Galehdar, A., W. S. T. Rowe, K. Ghorbani, P. J. Callus, S. John, and C. H.Wang, "The effect of ply orientation on the performance of antennas in or on carbon fiber composites," Progress In Electromagnetics Research, Vol. 116, 123-136, 2011.

3. De Rosa, I. M., R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, "Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 3, 700-707, August 2009.

4. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.

5. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.

6. Jylha, L. and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.

7. Teirikangas, M., J. Juuti, and H. Jantunen, "Organic-inorganic RF composites with enhanced permittivity by nanoparticle additions ," Progress In Electromagnetics Research, Vol. 115, 147-157, 2011.

8. Liao, Y., C. Zhang, Y. Zhang, V. Strong, J. Tang, X. Li, K. Kalantar-zadeh, E. M. V. Hoek, K. L. Wang, and R. B. Kaner, "Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors ," Nano Letters, Vol. 11, 954-959, 2011.

9. Santos, J., B. Lopes, and P. J. Costa Branco, "Ionic polymermetal composite material as a diaphragm for micropump devices," Sensors and Actuators A: Physical, Vol. 161, 225-233, June 2010.

10. Wang, J., J. Chen, K. Konstantinov, L. Zhao, S. H. Ng, G. X. Wang, Z. P. Guo, and H. K. Liu, "Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries ," Electrochimica Acta, Vol. 51, 4634-4638, June 2006.

11. Winther-Jensen, B., K. Fraser, C. Ong, M. Forsyth, and D. R. MacFarlane, "Conducting polymer composite materials for hydrogen generation," Advanced Materials, Vol. 22, No. 15, 1727-1730, April 2010.

12. Gao, D. and L. Gao, "Tunable lateral shift through nonlinear composites of nonspherical particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.

13. Bruggeman, D. A. G., "Berechnung verschiedener physikalischer konstanten von heterogenen substanzen," Annalen der Physik, Vol. 5, No. 24, 636-679, 1936.

14. McLachlan, D. S., A. Priou, I. Chernie, E. Isaac, and E. Henry, "Modeling the permittivity of composite materials with general effective medium equation," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 6, 1099-1131, 1992.

15. Maxwell Garnett, J. C., "Colours in metal glasses and metal films," Philos. Trans. R. Soc. London, Sect. A, Vol. 3, 385-420, 1904.

16. Tinga, W. R., W. A. G. Voss, and D. F. Blossey, "Generalized approach to multiphase dielectric mixture theory," J. Appl. Phys., Vol. 44, No. 9, 3897-3902, 1973.

17. Levy, O. and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B, Vol. 56, No. 13, 8035-8046, October 1997.

18. Moiseev, S. G., "Active Maxwell-Garnett composite with the unit refractive index ," Physica B: Condensed Matter, Vol. 405, No. 14, 3042-3045, 2010.

19. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Physical Review B, Vol. 53, 6318-6336, March 1996.

20. Ruppin, R., "Evaluation of extended Maxwell-Garnett theories," Optics Communications, Vol. 182, 273-279, August 2000.

21. Lu, S. Y. and H. C. Lin, "Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity," J. Appl. Phys., Vol. 79, 6761-6769, 1996.

22. Skryabin, I. L., A. V. Radchik, P. Moses, and G. B. Smith, "The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites," Appl. Phys. Lett., Vol. 70, 2221-2223, April 1997.

23. Sihvola, A. H., "Self-consistency aspects of dielectric mixing theories," IEEE Trans. on Geoscience and Remote Sensing, Vol. 27, 403-415, July 1989.

24. Garcia-Vidal, F. J., J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett., Vol. 78, 4289-4292, 1997.

25. Ao, C. O., Electromagnetic wave scattering by discrete random media with remote sensing applications, Ph.D. dissertation, Dept. Physics, Massachusetts Institute of Technology, Cambridge, MA, June 2001.

26. Brosseau, C., A. Beroual, and A. Boudida, "How shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric hetero structures?," J. Appl. Phys., Vol. 88, 7278-7288, 2000.

27. Ao, C. O. and J. A. Kong, "Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids," J. Opt. Soc. Am. A, Vol. 19, 1145-1156, June 2002.

28. Barrera, R. G., J. Giraldo, and W. L. Mochan, "Effective dielectric response of a composite with aligned spheroidal inclusions," Phys. Rev. B, Vol. 47, No. 4, 8528-8538, April 1993.

29. Varadan, V. V. and V. K. Varadan, "Anisotropic dielectric properties of media containing aligned non-spherical scatterers," IEEE Trans. Antennas and Propagation, Vol. 33, No. 8, 886-890, August 1985.

30. Xu, X., A. Qing, Y. B. Gan, and Y. P. Feng, "Effective properties of fiber composite materials," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 5, 649-662, 2004.

31. Srivastava, V. K., U. Gabbert, H. Berger, and S. Singh, "Analysis of particles loaded fiber composites for the evaluation of effective material properties with the variation of shape and size," International Journal of Engineering, Science and Technology, Vol. 3, No. 1, 52-68, 2011.

32. Antonini, G., A. Orlandi, and V. Ricchiuti, "Causality check for si data validation," 9th IEEE Workshop on Signal Propagation on Interconnects, Garmish-Partenkirchen, Ge, May 2005.

33. Mandrekar, R. and M. Swaminathan, Delay extraction from frequency domain data for causal macro-modeling of passive networks, IEEE International Symposium on Circuits and Systems, Vol. 6, 5758-5761, May 2005.

34. Triverio, P. and S. G. Talocia, "A robust causality verification tool for tabulated frequency data," 10th IEEE Workshop on Signal Propagation on Interconnects, Berlin, Ge, May 2006.

35. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Santa Clara, CA, Vol. 1, 309-314, August 2004.

36. Nisanci, M. H., F. De Paulis, M. Y. Koledintseva, and A. Orlandi, "Use of Maxwell Garnett model for random and aligned cylindrical inclusions in full wave EMC simulations," IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, August 2011.

37. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "Maxwell Garnett rule for dielectric mixtures with statistically distributed orientations of inclusions," Progress In Electromagnetics Research, Vol. 99, 131-148, 2009.

38. Sihlova, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. on Geoscience and Remote Sensing, Vol. 26, 420-429, July 1988.

39. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies ," Progress In Electromagnetics Research, Vol. 77, 193-214, 2007.

40. Sihvola, A., "Electromagnetic mixing formulas and applications," IEE, London, UK, 1999.

41. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., 2nd revised edition, Oxford, Pergamon, 1984.

42. Park, H. S., I. S. Choi, J. K. Bang, S. H. Suk, S. S. Lee, and H. T. Kim, "Optimized design of radar absorbing materials for complex targets," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1105-1117, 2004.

43. Meng, Z. Q., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.

44. Donelli, M., S. Caorsi, F. de Natale, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, 2004.

45. Koledintseva, M., K. Rozanov, and J. Drewniak, "Engineering, modeling and testing of composite absorbing materials for EMC applications," Advances in Composite Materials --- Ecodesign and Analysis, Chapter 13, 291-316, Brahim Attaf, InTech, March 2011.

46. De Paulis, F., M. H. Nisanci, M. Y. Koledintseva, and A. Orlandi, "From Maxwell Garnett to Debye model for electromagnetic simulation of composite dielectrics. Part I: Random spherical inclusions," IEEE Trans. Electromag. Compat., 2011.

47. http://orlandi.ing.univaq.it/Uaq Laboratory/docs/mg2d/Equations Part I.pdf.

48. Nisanci, M. H., M. H., F. De Paulis, M. Y. Koledintseva, and A. Orlandi, "From Maxwell Garnett to Debye model for electromagnetic simulation of composite dielectrics. Part II: Random cylindrical inclusions," IEEE Trans. Electromag. Compat., 2011.

49. http://orlandi.ing.univaq.it/Uaq Laboratory/docs/mg2d/Equations Part II.pdf.

50. Teflon Dielectric Properties, http://www.dupont.com/Teflon-Industrial/en US/products/product by name/teflon, November 2010.

51. Koledintseva, M. Y., J. Drewniak, and R. DuBroff, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.

52. Cho, K. H. and H. Y. Lee, "Pore-dependent dielectric and electrical properties of barium titanate ceramic," Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics , University Park, PA, USA., August 1991.

53. Norman, R. H., Electrically Conducting Rubber Composites, Elsevier, Oxford, 1970.

54. IEEE Standard P1597, Standard for Validation of Computational Electromagnetics Computer Modeling and Simulation, Part 1, 2, 2008.

55. Duffy, A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S. Woolfson, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part I --- The FSV method," IEEE Trans. on Electromagn. Compatibility, Vol. 48, No. 3, 449-459, 2006.

56. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II ---| Assessment of FSV performance," IEEE Trans. on Electromagn. Compatibility, Vol. 48, No. 3, 460-467, 2006.

57. Orlandi, A., , FSV Tool, 2011, downloadable at http://uaqemc.ing.univaq.it/uaqemc/FSV Tool 2 0 0L/.

58. Computer Simulation Technology, CST Studio Suite, 2011, [Online], Available: http://www.cst.com/.

59. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing, Ch. 2, 8, 10, and 11, 2nd edition, Prentice Hall Inc., 1999.

60. Hahn, S. L., Hilbert Transform in Signal Processing, Artech House Publishers, 2000.

© Copyright 2010 EMW Publishing. All Rights Reserved