Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 365-386


By D. Y. Heh and E. L. Tan

Full Article PDF (1,339 KB)

This paper presents the application of unconditionally stable fundamental finite-difference time-domain (FADI-FDTD) method in modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma (BCC). The healthy skin and BCC are modeled as Debye dispersive media and the model is incorporated into the FADI-FDTD method. Numerical experiments on delineating the BCC margin from healthy skin are demonstrated using the FADI-FDTD method based on reflected terahertz pulse. Hence, the FADI-FDTD method provides further insight on the different response shown by healthy skin and BCC under terahertz pulse radiation. Such understanding of the interaction of terahert pulse radiation with biological tissue such as human skin is an important step towards the advancement of future terahertz technology on biomedical applications.

D. Y. Heh and E. L. Tan, "Modeling the Interaction of Terahertz Pulse with Healthy Skin and Basal Cell Carcinoma Using the Unconditionally Stable Fundamental Adi-FDTD Method," Progress In Electromagnetics Research B, Vol. 37, 365-386, 2012.

1. Han, P. Y., G. C. Cho, and X. C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett., Vol. 25, 242-244, 2000.

2. Smye, S. W., J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, "The interaction between terahertz radiation and biological tissue," Phys. Med. Biol., Vol. 46, 101-112, 2001.

3. Pickwell, E. and V. P. Wallace, "Biomedical applications of terahertz technology," J. Phys. D: Appl. Phys., Vol. 39, 301-310, 2006.

4. Son, J.-H., "Terahertz electromagnetic interactions with biological matter and their applications," J. Appl. Phys., Vol. 105, No. 102033, 2009.

5. Woodward, R. M., B. E. Cole, V. P. Wallace, D. D. Arnold, R. J. Pye, E. H. Linfield, M. Pepper, and A. G. Davies, "Terahertz pulse imaging of in vitro basal cell carcinoma samples," TOPS, Vol. 56, 329-330, 2001.

6. Woodward, R. M., B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnold, E. H. Linfield, and M. Pepper, "Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue ," Phys. Med. Biol., Vol. 47, 3853-3863, 2002.

7. Pickwell, E., B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P.Wallace, "In vivo study of human skin using pulsed terahertz radiation ," Phys. Med. Biol., Vol. 49, 1595-1607, 2004.

8. Wallace, V. P., P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, "Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications," Faraday Discuss., Vol. 126, 255-263, 2004.

9. Wallace, V. P., A. J. Fitzgerald, S. Shankar, N. Flanagan, R. J. Pye, J. Cluff, and D. D. Arnone, "Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo," British J. Dermatol., Vol. 151, 424-432, 2004.

10. Wallace, V. P., A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and H. A. Thomas, "Terahertz pulsed spectroscopy of human basal cell carcinoma," Appl. Spectroscopy, Vol. 60, 1127-1133, 2006.

11. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media,", Vol. 14, No. 4, 302-307, Apr. 1966.

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 2005.

13. Pickwell, E., B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, "Simulation of terahertz pulse propagation in biological systems," Appl. Phys. Lett., Vol. 84, 2190-2192, 2004.

14. Pickwell, E., A. J. Fitzgerald, B. E. Cole, P. F. Taday, R. J. Pye, T. Ha, M. Pepper, and V. P. Wallace, "Simulating the response of terahertz radiation to basal cell carcinoma using ex vivo spectroscopy measurements," J. Biomed. Opt., Vol. 10, No. 064021, 2005.

15. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods,", Vol. 56, No. 1, 170-177, Jan. 2008.

16. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method,", Vol. 48, No. 9, 1550-1558, Sep. 2000.

17. Namiki, T., "3-D ADI-FDTD method: Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations,", Vol. 48, No. 9, 1743-1748, Oct. 2000.

18. Tan, E. L., "Concise current source implementation for efficient 3-D ADI-FDTD method ,", Vol. 17, No. 11, 748-750, Nov. 2007.

19. Sandby-Moller, J., T. Poulsen, and H. C. Wulf, "Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits," Acta Dermatol. Venereol., Vol. 83, 410-413, 2003.

20. Koehler, M. J., T. Vogel, P. Elsner, K. Konig, R. Buckle, and M. Kaatz, "In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography ," Skin Research and Technology, Vol. 16, 259-264, 2010.

21. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer ," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.

22. Hale, G. M. and M. R. Querry, "Optical constants of water in the 200nm to 200um wavelength region," Appl. Opt., Vol. 12, 555-563, 1973.

© Copyright 2010 EMW Publishing. All Rights Reserved