Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 125-141


By A. Gharaati and H. Azarshab

Full Article PDF (508 KB)

We investigate the characterization of defect modes in one-dimensional ternary symmetric metallo-dielectric photonic crystal (1DTSMDPC) band-gap structures. We consider the defect modes for symmetric model with respect to the defect layer. We demonstrate reflectance with respect to the wavelength and its dependence on different thicknesses and indices of refraction of dielectric defect layer, angle of incidence and number of periods for both transverse electric (TE) and transverse magnetic (TM) waves. Also, we investigate properties of the defect modes for different metals. Our findings show that the photonic crystal (PC) with defect layer, made of two dielectrics and one metallic material, leads to different band-gap structures with respect to one dielectric and one metallic layer. There is at least one defect mode when we use dielectric or metallic defect layer in symmetric structure. And, the number of defect modes will be increased by the enhancement of refractive index and thickness of dielectric defect layer.

A. Gharaati and H. Azarshab, "Characterization of Defect Modes in Onedimensional Ternary Metallo-Dielectric Nanolayered Photonic Crystal," Progress In Electromagnetics Research B, Vol. 37, 125-141, 2012.

1. Sakoda, K., "Optical Properties of Photonic Crystals," Springer-Verlag, Berlin, 2001.

2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

3. Dastmalchi, B., R. Kheradmand, A. Hamidipour, A. Mohtashami, K. Hingerl, and J. Zarbakhsh, "Local dispersion of guiding modes in photonic crystal waveguide interfaces and hetero-structures," Progress In Electromagnetics Research B, Vol. 26, 39-52, 2010.

4. Noda, S., M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron., Vol. 38, 726-735, 2002.

5. Inoue, K. and K. Ohtaka, Photonics Crystals: Physics, Fabrication and Applications, Springer-Verlag, Berlin, Heidelberg, 2004.

6. Gharaati, A. and Z. Zare, "Photonic band structures and enhacement of omnidirectional reflection bands by using a ternary 1D photonic crystal including left-handed materials," Progress In Electrimagnetic Research M, Vol. 20, 81-94, 2011.

7. Guida, G., "Numerical studies of disordered photonic," Progress In Electromagnetics Research, Vol. 41, 107-131, 2003.

8. Szipocs, R., K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers ," Optics Letters, Vol. 19, No. 3, 201-203, 1994.

9. Han, P. and H. Z. Wang, "Extension of omnidirectional reflection range in one-dimensional photonic crystals with staggered structure ," J. Opt. Soc. Am. B, Vol. 20, No. 9, 1996-2001, 2003.

10. Usievich, B. A., A. M. Prokhorov, and V. A. Sychugov, "A photonic-crystal narrow-band optical filter," Laser Physics, Vol. 12, No. 5, 898-902, 2002.

11. Chen, D., M.-L. V. Tse, and H.-Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetic Research M, Vol. 11, 53-64, 2010.

12. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.

13. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures ," Appl. Phys. Lett., Vol. 80, 4291-4293, 2002.

14. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.

15. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.

16. John, S., "Strong localization of photons in certain disordered lattices ," Phys. Rev. Lett., Vol. 58, 2489, 1987.

17. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 2005.

18. Tang, K., Y. Xiang, and S.Wen, "Tunable transmission and defect mode in one-dimensional ternary left-handed photonic crystal," Proc. of SPIE, 60200S.1-60200S.7(6020), 2005.

19. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, 132, Cambridge University Press, 2009..

20. Qi, L..-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.

21. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 311-313, California University, 1999.

22. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crysta," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.

23. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative reflection by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.

24. Topasna, D. M. and G. A. Topasna, "Numerical modeling of thin film optical filters," J. Opt. Soc. Am. A, 2009.

25. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength ranges by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.

26. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one-dimensional ternary photonic ban gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.

27. Born, M. and E. Wolf, Principles of Optics, Cambridge, London, 1999.

28. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, 244, Wiley, New York, 2007.

29. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 2008, www.ece.rutgers.edu/orfanidi/ewa.

30. Markos, P. and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left Handed Materials, Princeton University Press, New Jersey, 2008.

31. Marquez-Islas, R., B. Flores-Desirena, and F. Perez-Rodriguez, "Exciton polaritons in one dimensional metal-semiconductor photonic crystal," J. Nanosci. Nanotechnol., Vol. 8, 6584-6588, 2008.

© Copyright 2010 EMW Publishing. All Rights Reserved