PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 39 > pp. 225-239

FOUR-DIMENSIONAL SAR IMAGING SCHEME BASED ON COMPRESSIVE SENSING

By X.-Z. Ren, Y. F. Li, and R. Yang

Full Article PDF (329 KB)

Abstract:
The observation data obtained from 4-D synthetic aperture radar system is sparse and non-uniform in the baseline-time plane. Hence, the imaging results acquired by traditional Fourier-based methods are limited by high sidelobes. Considering the sparse structure of actual target space in high frequency radar application, a novel 4-D imaging scheme based on compressive sensing is proposed in this paper. Firstly, the azimuth-slant range image is acquired by traditional pulse compression. Then, the basis matrix and the measurement matrix are constructed based on the sparse distribution of the radar positions and the signal form after the azimuth-slant range compression. Moreover, a weighted matrix related to the supporting field of the target is introduced to the cost function. Finally, the elevation-velocity image is reconstructed with this new cost function. Simulation results confirm the effectiveness of the proposed method.

Citation:
X.-Z. Ren, Y. F. Li, and R. Yang, "Four-Dimensional SAR Imaging Scheme Based on Compressive Sensing," Progress In Electromagnetics Research B, Vol. 39, 225-239, 2012.
doi:10.2528/PIERB11121212

References:
1. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

2. Tian, B., D. Y. Zhu, and Z. D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

3. Chang, Y. L., C. Y. Chiang, and K. S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

4. Zhang, M., Y. W. Zhao, H. Chen, and W. Q. Jiang, "SAR image simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

5. Reigber, A. and A. Moreira, "First demonstration of airborne SAR tomography using multibaseline L-band data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, 2142-2150, 2000.
doi:10.1109/36.868873

6. Ren, X. Z., L. H. Qiao, and Y. Qin, "A three-dimensional imaging algorithm for tomography SAR based on improved interpolated array transform," Progress In Electromagnetics Research, Vol. 120, 181-193, 2011.

7. Regiber, A. and R. Scheiber, "Airborne differential SAR interferometry: First results at L-band," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, 1516-1520, 2003.
doi:10.1109/TGRS.2003.814610

8. Wu, B. I., M. C. Yeuing, Y. Hara, and J. A. Kong, "Insar height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 91, 173-193, 2009.
doi:10.2528/PIER09020902

9. Lombardini, F., "Differential tomography: A new framework for SAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 1, 1-8, 2005.
doi:10.1109/TGRS.2004.838371

10. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

11. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

12. Wei, H. Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513

13. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201

14. Serafino, F., F. Soldovieri, F. Lombardini, and G. Fornaro, Singular value decomposition applied to 4D SAR imaging, IEEE International Geoscience and Remote Sensing Symposium, 2701-2704, Seoul, Korea, 2005.

15. Ren, X. Z. and R. L. Yang, "An inverse problem based approach for differential SAR tomography imaging," Journal of Electronics & Information Technology, Vol. 32, No. 3, 582-586, 2010.
doi:10.3724/SP.J.1146.2009.00259

16. Fornaro, G., F. Serafino, and D. Reale, "4D SAR imaging for height estimation and monitoring of single and double scatterers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 1, 224-237, 2009.
doi:10.1109/TGRS.2008.2000837

17. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

18. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

19. Budillon, A., A. Evangelista, and G. Schirinzi, "Three-dimensional SAR focusing from multipass signals using compressive sampling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 488-499, 2010.
doi:10.1109/TGRS.2010.2054099

20. Zhu, X. X. and R. Bamler, "Tomography SAR Inversion by L1-norm regularization --- The compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2010.
doi:10.1109/TGRS.2010.2048117

21. Potter, L. C., P. Schniter, and J. Ziniel, Sparse reconstruction for radar, Proceedings of SPIE, Vol. 6970, 697003-1-697003-15, Orlando, FL, USA, 2008.

22. Fornaro, G., F. Serafino, and F. Soldovieri, "Three-dimensional focusing with multipass SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 3, 507-517, 2003.
doi:10.1109/TGRS.2003.809934

23. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

24. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

25. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, 21-30, 2008.
doi:10.1109/MSP.2007.914731

26. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," Journal of Fourier Analysis and Applications, Vol. 14, No. 5, 877-905, 2008.
doi:10.1007/s00041-008-9045-x


© Copyright 2010 EMW Publishing. All Rights Reserved