PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 40 > pp. 415-431

PROPERTIES OF OMNIDIRECTIONAL PHOTONIC BAND GAPS IN FIBONACCI QUASI-PERIODIC ONE-DIMENSIONAL SUPERCONDUCTOR PHOTONIC CRYSTALS

By H. F. Zhang, S. Liu, X.-K. Kong, B.-R. Bian, and X. Zhao

Full Article PDF (1,209 KB)

Abstract:
In this paper, the properties of the omnidirectional photonic band gap (OBG) realized by one-dimensional (1D) Fibonacci quasi-periodic structure which is composed of superconductor and isotropic dielectric have been theoretically investigated by the transfer matrix method (TMM). From the numerical results, it has been shown that this OBG is insensitive to the incident angle and the polarization of electromagnetic wave (EM wave), and the frequency range and central frequency of OBG cease to change with increasing Fibonacci order, but vary with the ambient temperature of system, the thickness of the superconductor, and dielectric layer, respectively. The bandwidth of OBG can be notably enlarged with increasing the superconductor thickness. Moreover, the frequency range of OBG can be narrowed with increasing the thickness of dielectric layer and ambient temperature. The damping coefficient of superconductor layers has no effect on the frequency range of OBG under low-temperature conditions. It is shown that Fibonacci quasi-periodic 1D superconductor dielectric photonic crystals (SDPCs) have a superior feature in the enhancement frequency range of OBG. This kind of OBG has potential applications in filters, microcavities, and fibers, etc.

Citation:
H. F. Zhang, S. Liu, X.-K. Kong, B.-R. Bian, and X. Zhao, "Properties of omnidirectional photonic band gaps in fibonacci quasi-periodic one-dimensional superconductor photonic crystals," Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012.
doi:10.2528/PIERB12040406
http://www.jpier.org/pierb/pier.php?paper=12040406

References:
1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disorder dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Leung, K. M. and Y. F. Chang, "Full vector wave calculation of photonic band structures in face-centered-face dielectric media," Phys. Rev. Lett., Vol. 65, 2646-2649, 1990.
doi:10.1103/PhysRevLett.65.2646

4. Zhang, Z. and S. Satpathy, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations," Phys. Rev. Lett., Vol. 65, 2650-2653, 1990.
doi:10.1103/PhysRevLett.65.2650

5. Yablonovitch, E., T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett., Vol. 67, 2295-2298, 1991.
doi:10.1103/PhysRevLett.67.2295

6. Li, Z. Y. and Y. Xia, "Omnidirectional absolute band gaps in two-dimensional photonic crystals," Phys. Rev. B, Vol. 64, 153108, 2001.
doi:10.1103/PhysRevB.64.153108

7. Hart, S. D., G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science, Vol. 296, 510-513, 2002.
doi:10.1126/science.1070050

8. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573

9. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B, Vol. 54, 11245-11252, 1996.
doi:10.1103/PhysRevB.54.11245

10. Johnson, S. G. and J. D. Joannopoulos, "Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap ," Appl. Phys. Lett., Vol. 77, 3490-3492, 2000.
doi:10.1063/1.1328369

11. Qiang, H., L. Jiang, W. Jia, and X. Li, "Analysis of enlargement of the omnidirectional total reflection band in a special kind of photonic crystals based on the incident angle domain ," Optic., Vol. 122, 345-348, 2011.

12. Negro, L. D., C. J. Oton, Z. Gaburro, L. Pavesi, P. Johson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci Quasicrystals," Phys. Rev. Lett., Vol. 90, 055501, 2003.
doi:10.1103/PhysRevLett.90.055501

13. Bayindir, M., E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B, Vol. 63, 161104, 2000.
doi:10.1103/PhysRevB.63.161104

14. Peng, R. W., M. Wang, A. Hu, S. S. Jiang, G. J. Jin, and D. Feng, "Photonic localization in one-dimensional K-component Fibonacci structures ," Phys. Rev. B, Vol. 57, 1544-1551, 1998.
doi:10.1103/PhysRevB.57.1544

15. Hattori, T., N. Tsurumachi, S. Kawato, and H. Nakatsuka, "Photonic dispersion relation in a one-dimensional quasicrystal," Phys. Rev. B, Vol. 50, 4420-4421, 1994.
doi:10.1103/PhysRevB.50.4220

16. Abdelaziz, K. B., J. Zaghdoudi, M. Kanzari, and B. Rezig, "A broad omnidirectional reflection band obtained from deformed Fibonacci quasi-periodic one dimensional photonic crystals ," J. Opt. A: Pure Appl. Opt., Vol. 7, 544-549, 2005.
doi:10.1088/1464-4258/7/10/005

17. Maciǎ, E., "Optical engineering with Fibonacci dielectric multilayers," Appl. Phys. Lett., Vol. 73, 3330-3332, 1998.
doi:10.1063/1.122759

18. Hsueh, W. J., C. T. Chen, and C. H. Chen, "Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism," Phys. Rev. A, Vol. 78, 013836, 2008.
doi:10.1103/PhysRevA.78.013836

19. Brouno-Alfonso, A., E. Reyes-Gómez, S. B. Cavalcanti, and L. E. Oliveira, "Band edge states of the < n >= 0 gap of Fibonacci photonic lattices ," Phys. Rev. A, Vol. 78, 035801, 2008.
doi:10.1103/PhysRevA.78.035801

20. Deng, X. H., J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, "Omnidirectional bandgaps in Fabonacci quasicrystals containing single-negative materials," J. Phys.: Condens. Matter, Vol. 22, 055403, 2010.
doi:10.1088/0953-8984/22/5/055403

21. Kushwaha, M. S. and G. Martinez, "Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals," Phys. Rev. E, Vol. 71, 027601, 2005.
doi:10.1103/PhysRevE.71.027601

22. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation ," Phys. Rev. B, Vol. 55, 7427-7444, 1997.
doi:10.1103/PhysRevB.55.7427

23. Zhang, H. F., S. B. Liu, X. X. Kong, L. Zou, C. Li, and W. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Phys. Plasmas, Vol. 19, 022103, 2012.
doi:10.1063/1.3680628

24. Chen, Y. B., C. Zhang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Tunable photonic crystals with superconductor constituents," Materials Letter, Vol. 55, 12-16, 2002.
doi:10.1016/S0167-577X(01)00610-3

25. Thapa, K. B., S. Srivastava, and S. Tiwai, "Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals," J. Supercond. Nov. Magn., Vol. 23, 517-525, 2010.
doi:10.1007/s10948-010-0644-9

26. Lyubchanskii, I. L., N. N. Dadonenkova, A. E. Zabolotin, Y. P. Lee, and T. Rasing, "A one-dimensional photonic crystals with a superconducting defect layer," J. Optic A: Pure Appl. Opt., Vol. 11, 114014, 2009.
doi:10.1088/1464-4258/11/11/114014

27. Wu, C.-J., "Transmission and reflection in a periodic superconductor/dielectric film multilayer structure," Journal of Electromagnetic Wave and Applications, Vol. 19, No. 15, 1991-1996, 2005.
doi:10.1163/156939305775570468

28. H. M., J. C. Wu, "Transmittance spectra in one-dimensional superconductor-dielectric photonic crystals," J. Appl. Phys., Vol. 107, 09E149, 2010.

29. Aly, A. H., S. W. Ryu, H. T. Hsu, and C. J. Wu, "THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattic," Material Chemistry and Physics, Vol. 113, 382-384, 2009.
doi:10.1016/j.matchemphys.2008.07.123

30. Wu, J. J. and J. X. Gao, "Transmission properties of Fibonacci quasi-periodic one-dimensional superconducting photonic crystals," Optic., 2011, doi:10.1016/j.ijleo.2011.07.015.

31. Lin, W. H., C. J. Wu, T. J. Yang, and S. J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystals," Optics Express, Vol. 18, 27155-27166, 2010.
doi:10.1364/OE.18.027155

32. Li, C. Z., S. B. Liu, X. K. Kong, B. R. Bian, and X. Y. Zhang, "Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice ," Applied Optic., Vol. 50, 2370-2375, 2011.
doi:10.1364/AO.50.002370

33. Dai, X., Y. Xiang, and S. Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

34. Lee, H. Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," J. Appl. Phy., Vol. 93, 819-837, 2003.
doi:10.1063/1.1530726


© Copyright 2010 EMW Publishing. All Rights Reserved