Vol. 44

Latest Volume
All Volumes
All Issues

Modeling of Metasheets Embedded in Dielectric Layers

By Marina Koledintseva, Jingyu Huang, James Drewniak, Richard E. DuBroff, and Bruce Archambeault
Progress In Electromagnetics Research B, Vol. 44, 89-116, 2012


Metasheet structures together with bulk composite dielectric layers can be used for antenna radomes, absorbers, and band gap structures. Transmission (T) and reflection (G) coefficients for a plane wave incident at any angle upon a metasheet embedded in a dielectric layer are considered. These metasheets are either patch-type or an aperture-type, and they can be either single-layered or multi-layered. To calculate T and Γ for a patch-type metasheet, a concise unified matrix approach is derived using the Generalized Sheet Transition Conditions (GSTC). The Babinet duality principle is utilized to get T and G for single-layered aperture-type metasheets (as complementary to the patch-type ones) at an arbitrary angle of incidence. The T-matrix approach is applied to calculate characteristics of multilayered metasheet structures containing a cascade of metasheets and dielectric slabs. In this paper, the minimum distance for neglecting higher-order evanescent mode interactions between the metasheets has been determined. Computed results based on the proposed analytical approach are compared with the fullwave numerical simulations. The analytical results are verified for satisfying the energy balance condition.


Marina Koledintseva, Jingyu Huang, James Drewniak, Richard E. DuBroff, and Bruce Archambeault, "Modeling of Metasheets Embedded in Dielectric Layers," Progress In Electromagnetics Research B, Vol. 44, 89-116, 2012.


    1. Pokrovsky, A. L. and A. L. Efros, "Electrodynamics of metallic photonic crystals and the problem of left-handed materials," Phys. Rev. Lett., Vol. 89, 093901, 2002.

    2. Rahmat-Samii, Y., "The marvels of electromagnetic band gap (EBG) structures: Novel microwave and optical applications," Proc. Microwave and Optoelectronics Conference, 265-275, Sep. 2003.

    3. Foteinopoulou, S., E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett., Vol. 90, 107402, 2003.

    4. Shvets, G., "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B, Vol. 67, 035109, 2003.

    5. Krowne, C. M. and Y. Zhang, Physics of Negative Refraction and Negative Index Materials, Springer Series in Materials Science, Vol. 98, Springer, 2007.

    6. Wu, T. K., "Frequency Selective Surface and Grid Array," Wiley, 1995.

    7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.

    8. Munk, B. A., Metamaterials, Critique and Alternatives, Wiley, 2007.

    9. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, "Radar Cross Section: Its Prediction, Measurement and Reduction," Ch. 9, Artech House, 1986.

    10. Narayan, S., K. Prasad, R. U. Nair, and R. M. Jha, "A novel EM analysis of double-layered thick FSS based on MM-GSM technique for radome applications," Progress In Electromagnetics Research Letters, Vol. 28, 53-62, 2012.

    11. Mahdy, M. R. C., M. R. A. Zuboraj, A. A. N. Ovi, and M. A. Matin, "Novel design of triple band rectangular patch antenna loaded with metamaterial," Progress In Electromagnetics Research Letters, Vol. 21, 99-107, 2011.

    12. Xu, Z., W. Lin, and L. Kong, "Controllable absorbing structure of metamaterial at microwave," Progress In Electromagnetics Research, Vol. 69, 117-125, 2007.

    13. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces-a review," Proceedings of the IEEE , Vol. 76, No. 12, 1593-1615, Dec. 1988.

    14. Lockyer, D. S., J. C. Vardaxoglou, and R. A. Simpkin, "Complementary frequency selective surfaces," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 147, No. 6, 501-507, Dec. 2000.

    15. Moss, C. D., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left-handed metamaterials," Progress In Electromagnetics Research, Vol. 35, 315-334, 2002.

    16. Kuester, E. F., M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2641-2651, Oct. 2003.

    17. Levy-Nathanson, R. and D. J. Bergman, "Decoupling and testing of the generalized Ohm's law," Phys. Rev. B, Vol. 55, 5425-5439, 1997.

    18. Lee, S. W., G. Zarrillo, and C. L. Law, "Simple formulas for transmission through periodic metal grids or plates," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 904-909, 1982.

    19. Kazantsev, Y. N., V. P. Mal'tsev, and A. D. Shatrov, "Diffraction of a plane wave from a two-dimensional grating of elements with inductive and capacitive coupling," Journal of Communications Technology and Electronics, Vol. 46, No. 12, 1303-1313, Dec. 2001.

    20. Yatsenko, V. V., S. I. Maslovski, S. A. Tretyakov, S. L. Prosvirnin, and S. Zouhd, "Plane-wave reflection from double arrays of small magnetoelectric scatterers," IEEE Trans. Antennas Propagat., Vol. 51, No. 1, 2-11, Jan. 2003.

    21. Holloway, C. L., M. A. Mohamed, and E. F. Kuester, "Reflection and transmission properties of a metafilm with application to a controllable surface composed of resonant particles," IEEE Trans. Electromag. Compat., Vol. 47, No. 4, 1-13, Oct. 2005.

    22. De Meulenaere, F. and J. Van Bladel, "Polarizability of some small apertures," IEEE Trans. Antennas Propagat., Vol. 25, No. 2, 198-205, Mar. 1977.

    23. Fabrikant, V. I., "Magnetic polarizability of small apertures: Analytical approach," J. Phys. A: Math. Gen., Vol. 20, 328-338, 1987.

    24. McDonald, N. A., "Polynomial approximations for the electric polarizabilities of some small apertures," IEEE Trans. Microw. Theory Techn., Vol. 33, No. 11, 1146-1149, Nov. 1985.

    25. McDonald, N. A., "Polynomial approximations for the transverse magnetic polarizabilities of some small apertures," IEEE Trans. Microw. Theory Techn., Vol. 35, No. 1, 20-23, Jan. 1987.

    26. Podosenov, S. A., A. A. Sokolov, and S. V. Al'betkov, "Method for determining the electric and magnetic polarizability of arbitrarily shaped conducting bodies," IEEE Trans. Electromag. Compat., Vol. 39, No. 1, 1-10, Feb. 1997.

    27. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2572-2581, Oct. 2003.

    28. Simovski, C. R. and P. A. Belov, "Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2582-2591, Oct. 2003.

    29. Sauviac, B., "Double split-ring resonators: Analytical modeling and numerical simulations," Electromagnetics, Vol. 24, No. 5, 317-338, 2004.

    30. Simovski, C. R., M. S. Kondratjev, P. A. Belov, and S. A. Tretyakov, "Interaction effects in two-dimensional bian-isotropic arrays," IEEE Trans. Antennas Propagat., Vol. 47, No. 9, 1429-1439, Sept. 1999.

    31. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., 1991.

    32. Maslovski , S. I. and S. A. Tretyakov, "Full-wave interaction field in two-dimensional arrays of dipole scatterers," Int. J. Electron. Commun., Vol. 53, 135-139, Arch. Elek. Ubertragungstechn.(AEU), 1999.

    33. Idemen, M., "Straightforward derivation of boundary conditions on sheet simulating an anisotropic thin layer," Electron. Lett., Vol. 24, 663-665, 1988.

    34. Idemen, M., "Universal boundary relations of the electromagnetic field," J. Phys. Soc. Japan., Vol. 59, 71-80, 1990.

    35. Kong, J. A., "Electromagnetic Wave Theory," Wiley, 1990.

    36. Jackson, J. D., "Classical Electrodynamics," Wiley, 1999.

    37. Inan, U. and A. Inan, Electromagnetic Waves, Ch. 3.5, Prentice Hall, New Jersey, 2000.

    38. Weber, R. J., Introduction to Microwave Circuits: Radio Frequency and Design Application, Ch. 2, 25{27, IEEE, New York, 2001.

    39. Eggimann, W. H. and R. E. Collin, "Dynamic interaction fields in a two-dimensional lattice," IEEE Trans. Microw. Theory Techn., Vol. 9, No. 2, 110-115, Mar. 1961.

    40. Eggimann, W. H., "Higher-order evaluation of electromagnetic diffraction by circular disks," IEEE Trans. Microw. Theory Techn., Vol. 9, No. 5, 408-418, Sep. 1961.

    41. Huang, J. Y., P. C. Ravva, M. Y. Koledintseva, R. E. DuBroff, J. L. Drewniak, B. Archambeault,K. N. Rozanov, "Design of a meta¯lm-composite dielectric shielding structure using a genetic algorithm," Progress In Electromagnetics Research Symposium, 297-301, Cambridge, MA, USA, Mar. 26-29, 2006.

    42. Koledintseva, M. Y., J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, B. Archambeault, "Modeling of shielding omposite materials and structures for microwave frequencies," Progress In Electromagnetic Research B, Vol. 15, 197-215, 2009.