PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 44 > pp. 345-365

USING OPTIMIZED ECCENTRICITY REXOLITE LENS FOR ELECTRICAL BEAM STEERING WITH INTEGRATED APERTURE COUPLED PATCH ARRAY

By A. Karttunen, J. Saily, A. E. I. Lamminen, J. Ala-Laurinaho, R. Sauleau, and A. V. Raisanen

Full Article PDF (663 KB)

Abstract:
Design and measurement results of a beam-steering integrated lens antenna at 77 GHz are presented. An 8-element LTCC aperture coupled patch antenna feed array with a switching network is used to electrically steer the main beam in H-plane. A 100-mm diameter Rexolite (εr = 2.53) lens is simulated and tested. The eccentricity of the lens is optimized in an earlier work with ray-tracing simulations for improved beam-steering properties compared to the conventional extended hemispherical and elliptical lenses. The beamsteering properties including scan loss, main-beam width and direction, side-lobe levels, directivity, and cross-polarization are analyzed in detail with both simulations and radiation pattern measurements. As expected, the results show that the side-lobe and cross-polarization levels are not predicted accurately with large feed offsets using the ray-tracing simulations. Nevertheless, it is shown that the lens shape can be successfully optimized with the simple and fast ray-tracing simulations. The measured half-power beam-width at 77 GHz is 2.5°±0.2° up to the largest tested beam-steering angle of 30°. The optimized eccentricity low permittivity lens results in smaller scan loss than the conventional lenses.

Citation:
A. Karttunen, J. Saily, A. E. I. Lamminen, J. Ala-Laurinaho, R. Sauleau, and A. V. Raisanen, "Using Optimized Eccentricity Rexolite Lens for Electrical Beam Steering with Integrated Aperture Coupled Patch Array," Progress In Electromagnetics Research B, Vol. 44, 345-365, 2012.
doi:10.2528/PIERB12082911

References:
1. Rasshofer, R. R. and K. Naab, "77 GHz long range radar systems status, ongoing developments and future challenges," Proc. 2nd Eur. Radar Conf., 161-164, Paris, France, 2005.

2. ETSI-Standard, ETSI EN 302 217-4-2 v1.4.1 (2008-8), "Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas; Part 4{2: Antennas,", 36, 2008.

3. Ala-Laurinaho, J., A. Karttunen, J. Saily, A. Lamminen, R. Sauleau, and A. V. Raisanen, "Mm-wave lens antenna with an integrated LTCC feed array for beam steering," Proc. 4th Eur. Conf. Antennas Propag., C09P1-2/1841151, Barcelona, Spain, Apr. 12-16, 2010.

4. Artemenko, A., A. Maltsev, R. Maslennikov, A. Sevastyanov, and V. Ssorin, "Beam steerable quartz integrated lens antenna for 60 GHz frequency band," Proc. 5th Eur. Conf. Antennas Propag., 788-792, Rome, Italy, Apr. 11-15, 2011.

5. Filipovic, D. F., G. P. Gauthier, S. Raman, and G. M. Rebeiz, "Off-axis properties of silicon and quartz dielectric lens antennas," IEEE Trans. Antennas Propag., Vol. 45, No. 5, 760-766, May 1997.
doi:10.1109/8.575618

6. Van der Vorst, M. J. M., P. J. I. de Maagt, and M. H. A. J. Herben, "Scan-optimized integrated lens antennas," Proc. 27th European Microwave Conference, 605-610, Jerusalem, Israel, 1997.

7. Karttunen, A., J. Ala-Laurinaho, R. Sauleau, and A. V. Raisanen, "A study of extended hemispherical lenses for a high-gain beam-steering antenna," Proc. 4th Eur. Conf. Antennas Propag., A25-1/1842008, Barcelona, Spain, Apr. 12{16, 2010.

8. Karttunen, A., J. Ala-Laurinaho, R. Sauleau, and A. V. Raisanen, "Optimal eccentricity of a low permittivity integrated lens for a high-gain beam-steering antenna," Proc. 5th Eur. Conf. Antennas Propag., 3522-3526, Rome, Italy, Apr. 11-15, 2011.

9. Karttunen, A., J. Ala-Laurinaho, R. Sauleau, and A. V. Raisanen, "Reduction of internal reflections in low permittivity integrated lens antennas," Proc. Millimetre Wave Days, Espoo, Finland, May 23-25, 2011.

10. Llombart, N., G. Chattopadhyay, A. Skalare, and I. Mehdi, "Novel terahertz antenna based on a silicon lens fed by a leaky wave enhanced waveguide," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2160-2168, Jun. 2011.
doi:10.1109/TAP.2011.2143663

11. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, Apr. 2005.
doi:10.1109/TAP.2005.844420

12. Wu, X., G. V. Eleftheriades, T. E. van Deventer-Perkins, and , "Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 3, 431-441, Mar. 2001.
doi:10.1109/22.910546

13. Boriskin, A. V. and R. Sauleau, "Synthesis of arbitrary-shaped lens antennas for beam-switching applications," Proc. 40th European Microwave Conference, 739-742, Paris, France, Sept. 28-30, 2010.

14. Boriskin, A. V. and R. Sauleau, "Lens shaping aimed at improvement of the beam-switching antenna off-axis properties," Proc. 2nd Eur. Conf. Antennas Propag., 739-742, Edinburgh, UK, Nov. 11-16, 2007.

15. Van der Vorst, M. J. M., P. J. I. de Maagt, and M. H. A. J. Herben, "Effect of internal reflections on the radiation properties and input admittance of integrated lens antennas," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1696-1704, Sept. 1999.
doi:10.1109/22.788611

16. Van der Vorst, M. J. M., P. J. I. de Maagt, A. Neto, A. L. Ryenolds, R. M. Heeres, W. Luinge, and M. H. A. J. Herben, "Efffect of internal reflections on the radiation properties and input admittance of integrated lens antennas comparison between measurements and theory," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 6, 1118-1125, Jun. 2001.
doi:10.1109/22.925500

17. Neto, A., A. Toccafondi, and S. Maci, "Mutual coupling between slots printed at the back of elliptical dielectric lenses," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 6, 1118-1125, Jun. 2001.
doi:10.1109/22.925500

18. Boriskin, A. V., R. Sauleau, and A. I. Nosich, "Performance of hemielliptic dielectric lens antennas with optimal edge illumination," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2193-2198, Jul. 2009.
doi:10.1109/TAP.2009.2021979

19. Costa, J. R., M. Silveirinha, and C. A. Fernandes, "Double-shell axial-symmetric imaging lens antenna for space applications," Antennas and Propagation Society International Symposium, Vol. 1B, 438-441, Jul. 2005.

20. Costa, J. R., M. G. Silveirinha, and C. A. Fernandes, "Evaluation of a double-shell integrated scanning lens antenna," IEEE Antennas Wireless Propag. Lett., Vol. 8, 781-784, Oct. 2008.

21. Lamminen, A., J. Saily, and A. Vimpari, "Design and processing of 60 GHz antennas on low temperature co-fired ceramic (LTCC) substrates," Proc. 4th ESA Workshop on Millimetre-Wave Technology and Applications, 43-48, Espoo, Finland, Feb. 15-17, 2006.

22. Lamminen, A. E. I., J. Saily, and A. R. Vimpari, "60-GHz patch antennas and arrays on LTCC with embedded-cavity substrates," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2865-2874, Sept. 2008.
doi:10.1109/TAP.2008.927560

23. Pursula, P., T. Karttaavi, M. Kantanen, A. Lamminen, J. Holmberg, M. Lahdes, I. Marttila, M. Lahti, A. Luukanen, and T. Vaha-Heikkila, "60-GHz millimeter-wave identification reader on 90-nm CMOS and LTCC," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 4, 1166-1172, Apr. 2011.
doi:10.1109/TMTT.2011.2114200

24. Kam, D., D. Liu, A. Natarajan, S. Reynolds, H.-C. Chen, and B. A. Floyd, "LTCC packages with embedded phased-array antennas for 60 GHz communications," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 3, 142-144, Mar. 2011.
doi:10.1109/LMWC.2010.2103932

25. Niciloiu, D., M. Lahti, A. Stefanescu, A. A. Muller, and T. Vaha-Heikkila, "Design and experiments of 77 GHz antennas in LTCC technology," Proc. 5th Eur. Conf. Antennas Propag., 253-257, Rome, Italy, Apr. 11-15, 2011.

26. Lamminen, A. and J. Saily, "Wideband stacked patch antenna array on LTCC for W-band," Proc. 5th Eur. Conf. Antennas Propag., 2962-2966, Rome, Italy, Apr. 11-15, 2011.

27. Aguirre, J., H.-Y. Pao, H.-S. Lin, P. Garland, D. O'Neil, and K. Horton, "An LTCC 94 GHz antenna array," IEEE Antennas and Propagation Society International Symposium, San Diego, CA, Jul. 2008.

28. Khalil, A., D. Passerieux, S. Verdeyme, L. Rigaudeau, and D. Baillargeat, "150 GHz bandpass filter using LTCC technology,", 455-457, Jul. 2009.

29. Gong, S., H. Shen, and N. S. Baker, "A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 4, 894-900, Apr. 2011.
doi:10.1109/TMTT.2011.2112374

30. Hoteit, H., R. Sauleau, B. Philippe, P. Coquet, and J.-P. Daniel, "Vector and parallel implementations for the FDTD analysis of millimeter wave planar antennas," Int. Journ. of High Speed Computing, Vol. 10, No. 2, 209-234, Dec. 1999.
doi:10.1142/S0129053399000107

31. Ludwig, A. C., "The de¯nition of cross polarization," IEEE Trans. Antennas Propag., Vol. 21, No. 1, 116-119, Jan. 1973.
doi:10.1109/TAP.1973.1140406

32. Holt, F. S. and E. L. Bouche, "A Gregorian corrector for spherical reflector," IEEE Trans. Antennas Propag., Vol. 12, No. 1, 44-47, Jan. 1964.
doi:10.1109/TAP.1964.1138145

33. Bourreau, D., A. Peden, and S. Le Maguer, "A quasi-optical free-space measurement setup without time-domain gating for material characterization in the W-band," IEEE Trans. Instrum. Meas., Vol. 55, No. 6, 2022-2028, Dec. 2006.
doi:10.1109/TIM.2006.884283

34. Chang, P. C. Y., J. G. Walker, and K. I. Hopcraft, "Ray tracing in absorbing media," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 96, 323-341, 2005.


© Copyright 2010 EMW Publishing. All Rights Reserved