PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 45 > pp. 1-18

METAL FOAMS FOR ELECTROMAGNETICS: EXPERIMENTAL, NUMERICAL AND ANALYTICAL CHARACTERIZATION

By L. Catarinucci, G. Monti, and L. Tarricone

Full Article PDF (485 KB)

Abstract:
This work focuses on the use of metal foams, a relatively new class of materials, for high added-value electromagnetic (EM) shields. First, the Shielding Effectiveness (SE) of aluminum foam slabs is experimentally evaluated, showing very good shielding properties. Successively, accurate numerical models of metal foams are proposed and used in a proprietary Variable-Mesh Parallel Finite Difference Time Domain code, in order to characterize the EM properties of slabs of such materials. Afterwards, a third approach is adopted. It consists in the application of the effective medium theories in order to obtain an analytical EM model of the metal foams; this way, their SE can be evaluated with a negligible computational time by using common mathematical tools. Finally, a methodology to design/analyze customized metal foams for EM shield applications is suggested. It takes advantage from the joint use of the numerical and analytical presented approaches, thus allowing a computationally efficient evaluation of SE and other electromagnetic properties of metal foams. Results demonstrate the suitability of metal foam structures for effective EM shielding in many industrial applications, as well as the accuracy of the proposed analytical and numerical approaches.

Citation:
L. Catarinucci, G. Monti, and L. Tarricone, "Metal Foams for Electromagnetics: Experimental, Numerical and Analytical Characterization," Progress In Electromagnetics Research B, Vol. 45, 1-18, 2012.
doi:10.2528/PIERB12082913

References:
1. Ashby, M. F., A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, 2000.

2. Kovacik, J., P. Tobolka, F. Simancik, J. Banhart, M. F. Ashby, and N. A. Fleck, "Metal foams and foam metal structures," Int. Conf. Metfoam'99, MIT Verlag Bremen, Germany, Jun. 1999.

3. Banhart, J., "Manufacture characterisation and application of cellular metals and metal foams," Progress in Materials Science, Vol. 46, No. 6, 559-632, 2001.
doi:10.1016/S0079-6425(00)00002-5

4. Deshpande, V. S. and N. A. Fleck, "Isotropic constitutive models for metallic foams," Journal of the Mechanics and Physics of Solids, Vol. 48, 1253-1283, 2000.
doi:10.1016/S0022-5096(99)00082-4

5. Hanssen, A. G., O. S. Hopperstad, M. Langseth, and H. Ilstad, "Validation of constitutive models applicable to aluminium foams," International Journal of Mechanical Sciences, Vol. 44, 359-406, 2002.
doi:10.1016/S0020-7403(01)00091-1

6. Lu, T. J. and J. M. Ong, "Characterization of close-celled cellular aluminium alloys," Journal of Materials Science, Vol. 36, 2773-2786, 2001.
doi:10.1023/A:1017977216346

7. Bart-Smith, H., J. W. Hutchinson, N. A. Fleck, and A. G. Evans, "In°uence of imperfections on the performance of metal foam core sandwich panels," Int. Journal of Solid and Structures, Vol. 39, 4999-5012, 2002.
doi:10.1016/S0020-7683(02)00250-0

8. Youssef, S., E. Maire, and R. Gaertner, "Finite element modeling of the actual structure of cellular materials determined by X-ray tomography," Acta Materialia, Vol. 53, 719-730, 2005..
doi:10.1016/j.actamat.2004.10.024

9. Baumeister, J., U. J. Banhart, and M. Weber, "Aluminium foams for transport industry," Materials & Design, Vol. 18, 217-220, 1997.
doi:10.1016/S0261-3069(97)00050-2

10. Han, F. S. and Z. G. Zhu, "The mechanical behavior of foamed aluminum," Journal of Materials Science, Vol. 34, 291-299, 1999.

11. Catarinucci, L., O. Losito, L. Tarricone, and F. Pagliara, "High added-value EM shielding by using metal-foams: Experimental and numerical characterization," IEEE Int. Symp. on Electromagnetic Compatibility, Vol. 2, 285-289, Aug. 2006.

12. Lovat, G. and P. Burghignoli, "Shielding effectiveness of a metamaterial slab," IEEE Int. Symp. on Electromagnetic Compatibility, 2007.

13. Boyvat, M. and C. Hafner, "Molding the flow of magnetic field with metamaterials: Magnetic field shielding," Progress In Electromagnetics Research, Vol. 126, 303-316, 2012.
doi:10.2528/PIER12022010

14. Monti, G., L. Catarinucci, and L. Tarricone, "New materials for electromagnetic shielding: Metal foams with plasma properties," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1700-1705, Aug. 2010.
doi:10.1002/mop.25309

15. Monti, G., L. Catarinucci, and L. Tarricone, "Metal foams for electromagnetic shielding: A plasma model," Proc. of European Conference on Antennas and Propagation, EuCAP 2009, 2123-2126, 2009.

16. Monti, G., L. Catarinucci, and L. Tarricone, "Experimental validation of a plasma model for electromagnetic metal foam shields," IEEE MTT-S International Microwave Symposium Digest, 145-148, 2009.

17. Catarinucci, L., P. Palazzari, and L. Tarricone, "A parallel variable-mesh FDTD tool for the solution of large electromagnetic problems," Proc. of 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005, Denver, CO, 2005.

18. Catarinucci, L., P. Palazzari, and L. Tarricone, "Parallel FDTD simulation of radiobase antennae," Radiation Protection Dosimetry, Vol. 97, No. 4, 409-413, 2001.
doi:10.1093/oxfordjournals.rpd.a006699

19. Catarinucci, L., P. Palazzari, and L. Tarricone, "A parallel FDTD tool for the solution of large dosimetric problems: An application to the interaction between humans and radiobase antennas," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1755-1758, 2002.

20. Catarinucci, L., P. Palazzari, and L. Tarricone, "Human exposure to the near field of radiobase antennas --- A full-wave solution using parallel FDTD," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 935-940, 2003.
doi:10.1109/TMTT.2003.808695

21. De Donno, , D., , A. Esposito, L. Tarricone, and L. Catarinucci, "Introduction to GPU computing and CUDA programming: A case study on FDTD," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 116-122, 2010.
doi:10.1109/MAP.2010.5586593

22. Catarinucci, L., P. Palazzari, and L. Tarricone, "On the use of numerical phantoms in the study of the human-antenna interaction problem," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 43-45, 2003.

23. Catarinucci, L. and L. Tarricone, "A parallel graded-mesh FDTD algorithm for human-antenna interaction problems," International Journal of Occupational Safety and Ergonomics, Vol. 15, No. 1, 45-52, 2009.

24. Taflove, A., Computational Electrodynamics: The Finite Difference Time-domain Method, Artech House, Norwood, MA, 1995.

25. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, Jan. 2001.
doi:10.1063/1.1343489

26. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electronics Review, Vol. 14, No. 3, 179-186, 2006.
doi:10.2478/s11772-006-0023-z

27. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801

28. Monti, G. and L. Tarricone, "Signal reshaping in a transmission line with negative group velocity behaviour," Microwave Optical Technology Letters, Vol. 51, No. 11, 2627-2633, 2009.
doi:10.1002/mop.24688

29. Monti, G. and L. Tarricone, "Dispersion analysis of a planar negative group velocity transmission line," Proceedings of the 37th European Microwave Conference, EUMC, 1644-1647, 2007.

30. Monti, G. and L. Tarricon, "Compact broadband monolithic 3-dB coupler by using artificial transmission lines," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2662-2667, 2008.
doi:10.1002/mop.23735

31. Monti, G. and L. Tarricone, "Reduced-size broadband CRLH-ATL rat-race coupler," Proceedings of the 36th European Microwave Conference, EuMC 2006, 125-128, 2007.

32. Wang, C.-W., T.-G. Ma, and C.-F. Yang, "A new planar artificial transmission line and its applications to a miniaturized butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2792-2801, 2007.
doi:10.1109/TMTT.2007.909474

33. Monti, G. and L. Tarricone, "Dual-band artificial transmission lines branch-line coupler," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 18, No. 1, 53-62, 2008.
doi:10.1002/mmce.20266

34. Monti, , G., , R. de Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
doi:10.2528/PIER09071109

35. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstrip line branch-line and rat race coupler couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 10, 2119-2125, Oct. 2003.
doi:10.1109/TMTT.2003.817442

36. Monti, G. and L. Tarricone, "A novel theoretical formulation for the analysis of the propagation of finite-bandwidth signals in a double-negative slab," Microwave and Optical Technology Letters, Vol. 47, No. 5, 434-439, 2005.
doi:10.1002/mop.21193

37. Monti, G. and L. Tarricone, "Gaussian pulse expansion of modulated signals in double-negative slab," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2755-2761, 2006.
doi:10.1109/TMTT.2006.874879

38. Choy, T. C., Effective Medium Theory: Principles and Applications Clarendon, Oxford University Press, New York, 1999.

39. Monti, G. and L. Tarricone, "Dispersion analysis of an negative group velocity medium with MATLAB," Applied Computational Electromagnetics Society Journal, Vol. 24, No. 5, 478-486, Oct. 2009.

40. Monti, G. and L. Tarricone, "On the propagation of a Gaussian pulse in a double-negative slab," Proc. 35th European Microwave Conference, 1419-1422, 2005.

41. ., Ann. Phys., Vol. 1, 566, Leipzig, 1900.

42. Ashcroft, N. W. and N. D. Mermin, olid State Physics, Saunders Co., Philadelphia, 1976.

43. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

44. Silveirinha, M. G. and C. A. Fernandes, "Homogenization of 3-D-connected and nonconnected wire metamaterials," IEEE Trans. on Microw. Theory and Techniques, Vol. 53, No. 4, Apr. 2005.

45. Maslovski, S. I., S. A. Tretyakov, and P. A. Belov, "Wire media with negative effective permittivity: A quasi static model," Microwave Optical Technology Letters, Vol. 35, No. 1, 47-51, Oct. 2002.
doi:10.1002/mop.10512

46. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Norwood, MA, 2003.

47. Lee, J.-Y., J.-H. Lee, H.-S. Kim, N.-W. Kang, and H.-K. Jung, "Effective medium approach of left-handed material using a dispersive FDTD method," IEEE Trans. on Magnetic, Vol. 41, No. 5, 1484-1487, May 2005.
doi:10.1109/TMAG.2005.844566

48. Moses, C. A. and N. Engheta, "Electromagnetic wave propagation in the wire medium: A complex medium with long thin inclusions," Wave Motion, Vol. 34, No. 3, 239-352, 2001.
doi:10.1016/S0165-2125(01)00095-6

49. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

50. Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, 1992.

51., "IEEE Standard method for measuring the effectiveness of electromagnetic shielding enclosures,", IEEE Std 299-2006, Feb. 2007.

52. Catarinucci, L., G. Monti, and L. Tarricone, "A parallel-grid-enabled variable-mesh FDTD approach for the analysis of slabs of double-negative metamaterials," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Vol. 3A, 782-785, Washington, Jul. 2005.


© Copyright 2010 EMW Publishing. All Rights Reserved