PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 45 > pp. 353-368

INDOOR LOCALIZATION IN THE PRESENCE OF RSS VARIATIONS VIA SPARSE SOLUTION FINDING AND DICTIONARY LEARNING

By W. Ke and L. Wu

Full Article PDF (191 KB)

Abstract:
In the received signal strength (RSS) based indoor wireless localization system, RSS measurements are very susceptible to the complex structures and dynamic nature of indoor environments, which will result in the system failure to achieve a high location accuracy. In this paper, we investigate the indoor positioning problem in the existence of RSS variations without prior knowledge about the localization area and without time-consuming off-line surveys. An adaptive sparsity-based localization algorithm is proposed to mitigate the effects of RSS variations. The novel feature of this method is to adjust both the overcomplete basis (a.k.a. dictionary) and the sparse solution using a dictionary learning (DL) technology based on the quadratic programming approach so that the location solution can better match the actual RSS scenario. Moreover, we extend this algorithm to deal with the problem of positioning targets from multiple categories, a novel problem that few works have ever concerned before. Simulation results demonstrate the superiority of the proposed algorithm over some state-of-art environmental-adaptive indoor localization methods.

Citation:
W. Ke and L. Wu, "Indoor Localization in the Presence of Rss Variations via Sparse Solution Finding and Dictionary Learning," Progress In Electromagnetics Research B, Vol. 45, 353-368, 2012.
doi:10.2528/PIERB12091405

References:
1. Liu, H., H. Darabi, H. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions n Systems, Man, and Cybernetics --- Part C, Vol. 37, No. 6, 1067-1080, 2007.
doi:10.1109/TSMCC.2007.905750

2. Lee, J. H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the Newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the MUSIC algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.

3. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

4. Honkavirta, V., T. Perala, S. A. Loytty, and R. Piche, "A comparative survey of WLAN location fingerprinting methods," WPNC, 243-251, 2009.

5. Mitilineos, S. A., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, "Indoor localization with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801

6. Jamlos, M. F. B., A. R. B. Tharek, M. R. B. Kamarudin, P. Saad, M. A. Shamsudin, A. M. M. Dahlan, and , "A novel adaptive Wi-Fi system with RFID technology," Progress In Electromagnetics Research, Vol. 108, 417-432, 2010.
doi:10.2528/PIER10071904

7. Cevher, V., M. F. Duarte, and R. G. Baraniuk, "Distributed target localization via spatial sparsity," EUSIPCO, 25-29, 2008.

8. Cevher, , V., P. Boufounos, R. G. Baraniuk, A. C. Gilbert, and M. J. Strauss, "Near-optimal bayesian localization via incoherence and sparsity," IPSN, 205-216, 2009.

9. Feng, C., S. Valaee, and Z. Tan, "Multiple target localization using compressive sensing," GLOBECOM, 4356-4361, 2009.

10. Feng, C., W. S. A. Au, S. Valaee, Z. Tan, "Orientation-aware indoor localization using affinity propagation and compressive sensing," IEEE CAMSAP, 261-264, 2009.

11. Martinez, E. A., R. Cruz, and J. Favela, "Estimating user location in a WLAN using backpropagation neural networks," IBERAMIA, 737-746, 2004.

12. Rappaport, T. S., Wireless Communication: Principles and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1999.

13. Kushki, A., N. Plataniotis, and A. N. Venetsanopoulos, "Kernel-based positioning in wireless local area networks," IEEE Transactions on Mobile Computing, Vol. 6, No. 6, 689-705, 2007.
doi:10.1109/TMC.2007.1017

14. Candes, E. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

15. Youssef, M., A. Agrawala, and A. U. Shankare, "WLAN location determination via clustering and probability distributions," PerCom, 143-150, 2003.

16. Rubinstein, R., A. M. Bruckstein, and M. Elad, "Dictionaries for sparse representation modeling," Proc. of IEEE, Vol. 98, No. 6, 1045-1057, 2010.
doi:10.1109/JPROC.2010.2040551

17. Chen, S. S., D. L. Donoho, and M. A. Saunrsde, "Atomic decomposition by basis pursuit," SIAM Review, Vol. 43, No. 1, 129-159, 2001.
doi:10.1137/S003614450037906X

18. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," Journal of Fourier Analysis Application, Vol. 14, No. 5-6, 877-905, 2008.
doi:10.1007/s00041-008-9045-x

19. Nocedal, J. and S. J. Wright, Numerical Optimization, Springer Verlag, New York, 2006.

20. Dattorro, J., Convex Optimization and Euclidean Distance Geometry, Meboo Publishing, Palo Alto, CA, 2005.

21. Chiang, M. T. and B. Mirkin, "Intelligent choice of the number of clusters in K-means clustering: An experimental study with different cluster spreads," Journal of Classification, Vol. 27, No. 1, 3-40, 2010.
doi:10.1007/s00357-010-9049-5

22. Lim, H., L. C. Kung, J. C. Hou, and H. Luo, "Zero-configuration indoor localization over IEEE 802.11 wireless," Wireless Networks,, Vol. 16, No. 2, 405-420, 2010.
doi:10.1007/s11276-008-0140-3


© Copyright 2010 EMW Publishing. All Rights Reserved