PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 48 > pp. 1-22

TWO EFFICIENT UNCONDITIONALLY-STABLE FOUR-STAGES SPLIT-STEP FDTD METHODS WITH LOW NUMERICAL DISPERSION

By Y.-D. Kong, Q.-X. Chu, and R.-L. Li

Full Article PDF (581 KB)

Abstract:
Two efficient unconditionally-stable four-stages split-step (SS) finite-difference time-domain (FDTD) methods based on controlling parameters are presented, which provide low numerical dispersion. Firstly, in the first proposed method, the Maxwell's matrix is split into four sub-matrices. Simultaneously, two controlling parameters are introduced to decrease the numerical dispersion error. Accordingly, the time step is divided into four sub-steps. The second proposed method is obtained by adjusting the sequence of the sub-matrices deduced in the first method. Secondly, the theoretical proofs of the unconditional stability and dispersion relations of the proposed methods are given. Furthermore, the processes of obtaining the controlling parameters for the proposed methods are shown. Thirdly, the dispersion characteristics of the proposed methods are also investigated, and numerical dispersion errors of the proposed methods can be decreased significantly. Finally, to substantiate the efficiency of the proposed methods, numerical experiments are presented.

Citation:
Y.-D. Kong, Q.-X. Chu, and R.-L. Li, "Two Efficient Unconditionally-Stable Four-Stages Split-Step FDTD Methods with Low Numerical Dispersion," Progress In Electromagnetics Research B, Vol. 48, 1-22, 2013.
doi:10.2528/PIERB12103011

References:
1. Taflove, A. and S. C. Hagness, Computational Electrodynamics --- The Finite-difference Time-domain Method, 2nd Ed., Artech House, Boston, MA, 2000.

2. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.

3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075

4. Zheng, F. H., Z. Z. Chen, and J. Z. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.868993

5. Zheng, F. H. and Z. Z. Chen, "Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 5, 1006-1009, May 2001.
doi:10.1109/22.920165

6. Ahmed, I. and Z. Z. Chen, "Error reduced ADI-FDTD methods," IEEE Antennas Wireless Propag. Lett., Vol. 4, 323-325, 2005.
doi:10.1109/LAWP.2005.855630

7. Wang, S. M., F. L. Teixeira, and J. Chen, "An iterative ADI-FDTD with reduced splitting error," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 2, 92-94, Feb. 2005.
doi:10.1109/LMWC.2004.842835

8. Kong, K. B., J. S. Kim, and S. O. Park, "Reduced splitting error in the ADI-FDTD method using iterative method," Microwave Optical Technol. Lett., Vol. 50, No. 8, 2200-2203, Aug. 2008.
doi:10.1002/mop.23618

9. Wang, M. H., Z. Wang, and J. Chen, "A parameter optimized ADI-FDTD method," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 118-121, 2003.
doi:10.1109/LAWP.2003.815283

10. Sun, M. K. and W. Y. Tam, "Low numerical dispersion two-dimensional (2, 4) ADI-FDTD method," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 1041-1044, Mar. 2006.
doi:10.1109/TAP.2006.869940

11. Fu, W. and E. L. Tan, "A parameter optimized ADI-FDTD method based on the (2, 4) stencil," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1836-1842, Jun. 2006.
doi:10.1109/TAP.2006.875512

12. Ahmed, I. and Z. Z. Chen, "Dispersion-error optimized ADI-FDTD," Proc. IEEE MTT-S Int. Microw. Symp. Dig., 173-176, Jun. 2006.

13. Zhao, A. P., "Improvement on the numerical dispersion of 2-D ADI-FDTD with artificial anisotropy," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 292-294, Jun. 2004.
doi:10.1109/LMWC.2004.828002

14. Zheng, H. X. and K. W. Leung, "An efficient method to reduce the numerical dispersion in the ADI-FDTD," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2295-2301, Jul. 2005.
doi:10.1109/TMTT.2005.850441

15. Zhang, Y. and S. W. Lv, "Genetic algorithm in reduction of numerical dispersion of 3-D alternating-direction-implicit finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 966-973, May 2007.
doi:10.1109/TMTT.2007.895645

16. Srivastava, K. V., V. V. Mishra, and A. Biswas, "An accurate analysis of numerical dispersion for 3-D ADI-FDTD with artificial anisotropy," Microwave Optical Technol. Lett., Vol. 49, No. 12, 3109-3112, Dec. 2007.
doi:10.1002/mop.22961

17. Kong, K. B., J. S. Kim, and S. O. Park, "Reduction of numerical dispersion by optimizing second-order cross product derivative term in the ADI-FDTD method," Microwave Optical Technol. Lett., Vol. 50, No. 1, 123-127, Jan. 2008.
doi:10.1002/mop.22991

18. Zhang, Y., S. W. Lv, and J. Zhang, "Reduction of numerical dispersion of 3-D higher order alternating-direction-implicit finite-difference time-domain method with artificial anisotropy," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 10, 2416-2428, Oct. 2009.
doi:10.1109/TMTT.2009.2029638

19. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, Sep. 2004.
doi:10.1049/el:20046040

20. Fu, W. and E. L. Tan, "Compact higher-order split-step FDTD method," Electron. Lett., Vol. 41, No. 7, 397-399, Mar. 2005.
doi:10.1049/el:20057927

21. Xiao, F., X. H. Tang, L. Guo, and T. Wu, "High-order accurate split-step FDTD method for solution of Maxwell's equations," Electron. Lett., Vol. 43, No. 2, 72-73, Jan. 2007.
doi:10.1049/el:20073521

22. Chu, Q. X. and Y. D. Kong, "High-order accurate FDTD method based on split-step scheme for solving Maxwell's equations," Microwave Optical Technol. Lett., Vol. 51, No. 2, 562-565, Feb. 2009.
doi:10.1002/mop.24100

23. Kusaf, M. and A. Y. Oztoprak, "An unconditionally stable split step FDTD method for low anisotropy," IEEE Microw. Wireless Comp. Lett., Vol. 18, No. 4, 224-226, Apr. 2008.
doi:10.1109/LMWC.2008.918865

24. Chu, Q. X. and Y. D. Kong, "Three new unconditionally-stable FDTD methods with high-order accuracy," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2675-2682, Sep. 2009.
doi:10.1109/TAP.2009.2027045

25. Kong, Y. D. and Q. X. Chu, "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.
doi:10.1109/TAP.2011.2161543

26. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "Study on the stability and numerical error of the four-stages split-step FDTD method including lumped inductors," Progress In Electromagnetics Research B, Vol. 44, 117-135, 2012.

27. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512

28. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381

29. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012.
doi:10.2528/PIERM11111803

30. Yang, S. C., Z. Chen, Y. Q. Yu, and W. Y. Yin, "An unconditionally stable one-step arbitrary-order leapfrog ADI-FDTD method and its numerical properties," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1995-2003, Apr. 2012.
doi:10.1109/TAP.2012.2186249

31. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166

32. Ahmed, I., E. Chua, E. P. Li, and Z. Z. Chen, "Development of three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544

33. Liang, F. and G. Wang, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2035-2043, Jan. 2008.
doi:10.1163/156939308787538017

34. Liu, Q. F., Z. Z. Chen, and W. Y. Yin, "An arbitrary order LOD-FDTD method and its stability and numerical dispersion," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2409-2417, Aug. 2009.
doi:10.1109/TAP.2009.2024492

35. Li, E. P., I. Ahmed, and R. Vahldieck, "Numerical dispersion analysis with an improved LOD-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 5, 319-321, May 2007.
doi:10.1109/LMWC.2007.895687

36. Jung, K. Y. and F. L. Teixeira, "An iterative unconditionally stable LOD-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 2, 7678, Feb. 2008.

37. Liang, F., G. Wang, and W. Ding, "Low numerical dispersion locally one-dimensional FDTD method based on compact higher-order scheme," Microwave Optical Technol. Lett., Vol. 50, No. 11, 2783-2787, Nov. 2008.
doi:10.1002/mop.23842

38. Liang, F., G. Wang, H. Lin, and B.-Z. Wang, "Numerical dispersion improved three-dimensional locally one-dimensional finite-difference time-domain method," IET Microw. Antennas & Propag., Vol. 5, No. 10, 1256-1263, 2011.
doi:10.1049/iet-map.2010.0595

39. Liu, Q. F., W. Y. Yin, Z. Z. Chen, and P. G. Liu, "An efficient method to reduce the numerical dispersion in the LOD-FDTD method based on the (2, 4) stencil," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2384-2393, Jul. 2010.


© Copyright 2010 EMW Publishing. All Rights Reserved