PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 48 > pp. 151-173

INFLUENCE OF THE SPOT-SIZE AND CROSS-SECTION ON THE OUTPUT FIELDS AND POWER DENSITY ALONG THE STRAIGHT HOLLOW WAVEGUIDE

By Z. Menachem and S. Tapuchi

Full Article PDF (3,996 KB)

Abstract:
This paper presents a rigorous approach for the propagation of electromagnetic (EM) fields along a straight hollow waveguide with a circular cross section. The objectives are to present the technique to calculate the dielectric profiles and their transverse derivatives in the inhomogeneous cross section of the cylindrical hollow waveguide, and to understand the influence of the spot-size and cross section on the output fields and output power density. The derivation is based on Maxwell's equations. The longitudinal components of the fields are developed into the Fourier-Bessel series. The transverse components of the fields are expressed as functions of the longitudinal components in the Laplace plane and are obtained by using the inverse Laplace transform by the residue method. The separation of variables is obtained by using the orthogonal-relations. These objectives contribute to the application of the model for the straight hollow waveguide.

Citation:
Z. Menachem and S. Tapuchi, "Influence of the Spot-Size and Cross-Section on the Output Fields and Power Density Along the Straight Hollow Waveguide," Progress In Electromagnetics Research B, Vol. 48, 151-173, 2013.
doi:10.2528/PIERB12112009

References:
1. Harrington, J. A. and Y. Matsuura, "Review of hollow waveguide technology," Proc. SPIE,, Vol. 2396, 4-14, 1995.
doi:10.1117/12.208395

2. Harrington, J. A., D. M. Harris, and A. Katzir, Biomedical Optoelectronic Instrumentation, 4-14, 1995.
doi:10.1117/12.208395

3. Harrington, J. A., "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics, Vol. 19, 211-228, 2000.
doi:10.1080/01468030050058794

4. Marhic, M. E., "Mode-coupling analysis of bending losses in IR metallic waveguides," Appl. Opt., Vol. 20, 3436-3441, 1981.
doi:10.1364/AO.20.003436

5. Croitoru, N., E. Goldenberg, D. Mendlovic, S. Ruschin, and N. Shamir, "Infrared chalcogenide tube waveguides," Proc. SPIE, Vol. 618, 140-145, 1986.
doi:10.1117/12.961107

6. Novotny, L. and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallc, dielectric function," Physical Review E, Vol. 50, 4094-4106, 1994.
doi:10.1103/PhysRevE.50.4094

7. Yener, N., "Advancement of algebraic function approximation in eigenvalue problems of lossless metallic waveguides to infinite dimensions, Part I: Properties of the operator in infinite dimensions," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1611-1628, 2006.
doi:10.1163/156939306779292363

8. Yener, N., "Algebraic function approximation in eigenvalue problems of lossless metallic waveguides: Examples," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 731-745, 2006.
doi:10.1163/156939306776143442

9. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using Taylor's series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1093-1100, 2006.
doi:10.1163/156939306776930286

10. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using the Fourier series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1299-1310, 2006.
doi:10.1163/156939306779276758

11. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701

12. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley and Sons, 1999.

13. Hildebrand, F. B., Advanced Calculus for Applications, 2nd Ed., Prentice Hall Inc., 1976.

14. Collin, R. E., Foundation for Microwave Engineering, McGraw-Hill, New York, 1996.

15. Yariv, A., Optical Electronics, 3rd Ed., Holt-Saunders Int. Editions, 1985.

16. Baden Fuller, A. J., Microwaves, Chap. 5, 118{120, Pergamon Press, A. Wheaton and Co. Ltd, Oxford, 1969.

17. Olver, F. W. J., "Royal Society Mathematical Tables, Zeros and Associated Values," University Press Cambridge, 2-30, 1960.

18. Jahnke, E. and F. Emde, "Tables of Functions with Formulae and Curves," Chap. 8, 166, Dover Publications, New York, 1945.

19. The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, , Oxford, UK.

20. Menachem, Z., E. Jerby, and , "Transfer matrix function (TMF) for wave propagation in dielectric waveguides with arbitrary transverse profiles," IEEE Trans. Microwave Theory Tech., Vol. 46, 975-982, 1998.
doi:10.1109/22.701451

21. Vladimirov, V., Equations of Mathematical Physics, 1971.

22. Miyagi, M., K. Harada, and S. Kawakami, "Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature," IEEE Trans. Microwave Theory Tech., Vol. 32, 513-521, 1984.
doi:10.1109/TMTT.1984.1132715

23. Croitoru, N., A. Inberg, M. Oksman, and M. Ben-David, "Hollow silica, metal and plastic waveguides for hard tissue medical applications," Proc. SPIE, Vol. 2977, 30-35, 1997.
doi:10.1117/12.271023


© Copyright 2010 EMW Publishing. All Rights Reserved