Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 49 > pp. 339-362


By F. Soldovieri, I. Catapano, P. M. Barone, S. E. Lauro, E. Mattei, E. Pettinelli, G. Valerio, D. Comite, and A. Galli

Full Article PDF (463 KB)

The capability of Ground Penetrating Radar (GPR) systems of accurately reconstructing the geometrical features of buried objects, when working in critical conditions, is investigated. A customized microwave tomographic approach is used to tackle the imaging through the processing of comparative experimental and synthetic GPR data. The first ones have been gathered in laboratory controlled conditions, while the second ones have been obtained by exploiting an ad-hoc implementation of a CAD tool. Attention is paid to the significant case of `strong' scatterers having size comparable to the wavelengths of the probing signal, and possibly located close to the interface where the GPR antennas move. The results from imaging point out the potential of the proposed approach, showing in particular to which extent, in challenging operational settings, it is possible to recover also the information about the shape of metallic targets in addition to their correct location and size.

F. Soldovieri, I. Catapano, P. M. Barone, S. E. Lauro, E. Mattei, E. Pettinelli, G. Valerio, D. Comite, and A. Galli, "GPR Estimation of the Geometrical Features of Buried Metallic Targets in Testing Conditions," Progress In Electromagnetics Research B, Vol. 49, 339-362, 2013.

1. Daniels, D. J. (ed.), Ground Penetrating Radar, 2nd Ed., The Institution of Electrical Engineers (IEE), London, UK, 2004.

2. Jol, H. M. (ed.), Ground Penetrating Radar: Theory and Applications, Elsevier, Amsterdam, The Netherlands, 2009.

3. Cook, J., "Radar transparencies of mine and tunnel rocks," Geophysics, Vol. 40, No. 5, 865-885, Oct. 1975.

4. Conyers, L. B., Ground-penetrating Radar for Archaeology, AltaMira Press, Walnut Creek, CA, USA, 2004.

5. Pettinelli, E., A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR Response from buried pipes: Measurement on field site and tomographic reconstructions," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 8, 2639-2645, Aug. 2009.

6. Picardi , G., J. J. Plaut, D. Biccari, O. Bombaci, D. Calabrese, M. Cartacci, A. Cicchetti, S. M. Clifford, P. Edenhofer, W. M. Farrell, C. Federico, A. Frigeri, D. A. Gurnett, T. Hagfors, E. Heggy, A. Herique, R. L. Hu®, A. B. Ivanov, W. T. K. Johnson, R. L. Jordan, D. L. Kirchner, W. Kofman, C. J. Leuschen, E. Nielsen, R. Orosei, E. Pettinelli, R. J. Phillips, D. Plettemeier, A. Safaeinili, R. Seu, E. R. Stofan, G. Vannaroni, T. R. Watters, and E. Zampolini, "Radar soundings of the subsurface of Mars," Science, Vol. 310, No. 5756, 1925-1928, Dec. 2005.

7. Vannaroni, G., et al., "MUSES: Multi-sensor soil electromagnetic sounding," Planetary Space Sci., Vol. 52, 67-78, 2004.

8. Pettinelli, E., P. Burghignoli, A. R. Pisani, F. Ticconi, A. Galli, G. Vannaroni, and F. Bella, "Electromagnetic propagation of GPR signals in Martian subsurface scenarios including material losses and scattering," IEEE Trans. on Geosci. Remote Sens., Vol. 45, 1271-1281, May 2007.

9. Ciarletti, V., C. Corbel, D. Plettemeier, P. Cais, S. M. Clifford, and S.-E. Hamran, "WISDOM GPR designed for shallow and high-resolution sounding of the Martian subsurface," Proc. IEEE, Vol. 99, No. 5, 824-836, 2011.

10. Turk, A. S., A. K. Hocaoglu, A. A. Vertiy, and Eds., Subsurface Sensing, Wiley, Hoboken, NJ, USA, 2011.

11. Yamaguchi, Y., M. Mitsumoto, M. Sengoku, and T. Abe, "Synthetic aperture FM-CW radar applied to the detection of objects buried in snowpack," IEEE Trans. on Geosci. Remote Sens., Vol. 32, No. 1, 11-18, Jan. 1994.

12. Chang, C. W., C. H. Lin, and H. S. Lien, "Measurement radius of reinforcing steel bar in concrete using digital image GPR," Construction Building Materials, Vol. 23, No. 2, 1057-1063, Feb. 2009.

13. Arcone, S., D. Finnegan, and G. Boitnott, "GPR characterization of a lacustrine UXO site," Geophysics, Vol. 75, No. 4, WA221-WA229, Jul. 2010.

14. Radzevicius, S., "Practical 3-D migration and visualization for accurate imaging of complex geometries with GPR," J. Environ. Engin. Geophysics, Vol. 13, No. 2, 99-112, Jun. 2008.

15. Shihab, S. and W. Al-Nuaimy, "Radius estimation for cylindrical objects detected by ground penetrating radar," Subsurface Sensing Technol. Applicat., Vol. 6, No. 2, 151-166, Apr. 2005.

16. Gantala, G., C. V. Krishnamurthy, K. Balasubramaniam, and N. Ganesan, "Shape reconstruction of metal pipes with corrosion defects using single frequency limited view scattered data," NDT & E Internat., Vol. 52, 129-135, Nov. 2012.

17. Grandjean, G., J. C. Gourry, and A. Bitri, "Evaluation of GPR techniques for civil-engineering applications: Study on a test site," J. Applied Geophysics, Vol. 45, No. 3, 141-156, Oct. 2000.

18. Zeng, X. and G. A. McMechan, "GPR characterization of buried tanks and pipes," Geophysics, Vol. 62, No. 3, 797-806, Jun. 1997.

19. Duchene, B., A. Joisel, and M. Lambert, "Nonlinear inversions of immersed objects using laboratory-controlled data," Inverse Problems, Vol. 20, No. 6, S81-S98, 2004.

20. Valerio, G., A. Galli, P. M. Barone, S. E. Lauro, E. Mattei, and E. Pettinelli, "GPR detectability of rocks in a Martian-like shallow subsoil: A numerical approach," Planetary Space Sci., Vol. 62, 31-40, 2012.

21. Ko, K. H., G. Jang, K. Park, and K. Kim, "GPR-based landmine detection and identification using multiple features," Int. J. Antennas Propag., Vol. 2012, Article ID 826404, 7, 2012.

22. Baum, C. E. and Ed., Detection and Identification of Visually Obscured Targets, Taylor and Francis, Philadelphia, PA, 1999.

23. Uduwawala, D., M. Norgren, P. Fuks, A. Gunawardena, and , "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.

24. Ozdemir, C., S. Demirci, and E. Yigit, "Practical algorithms to focus B-scan GPR images: Theory and application to real data," Progress In Electromagnetics Research B, Vol. 6, 109-122, 2008.

25. Song, L.-P., Q. H. Liu, F. Li, and Z. Q. Zhang, "Reconstruction of three-dimensional objects in layered media: Numerical experiments," IEEE Trans. on Antennas and Propag., Vol. 53, No. 4, 1556-1561, Apr. 2005.

26. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, nstitute of Physics Publishing, London, UK, 1998.

27. Witten, A. J., J. E. Molyneux, and J. E. Nyquist, "Ground penetrating radar tomography: Algorithms and case studies," IEEE Trans. on Geosci. Remote Sens., Vol. 32, No. 2, 461-467, Mar. 1994.

28. Capineri, L., P. Grande, and J. A. G. Temple, "Advanced image-processing technique for real-time interpretation of ground-penetrating radar images," Int. J. Imaging Systems Tech., Vol. 9, No. 1, 51-59, Dec. 1998.

29. Wu, Z. and C. Liu, "An image reconstruction method using GPR data," IEEE Trans. on Geosci. Remote Sens., Vol. 37, No. 1, 327-334, Jan. 1999.

30. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 4, 1697-1708, Jul. 2000.

31. Hansen, T. B. and P. M. Johansen, "Inversion scheme for ground penetrating radar that takes into account the planar air-soil interface," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 1, 496-506, Jan. 2000.

32. Kleinman, R. E. and P. M. van den Berg, "Two-dimensional location and shape reconstruction," Radio Sci., Vol. 29, No. 4, 1157-1169, 1994.

33. Dorn, O., E. L. Miller, and C. M. Rappaport, "A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets," Inverse Problems, Vol. 16, No. 5, 1119-1156, Oct. 2000.

34. Catapano, I., L. Crocco, and T. Isernia, "A simple two-dimensional inversion technique for imaging homogeneous targets in stratified media," Radio Sci., Vol. 39, No. 14, Feb. 2004.

35. Feijoo, G. R., "A new method in inverse scattering based on topological derivative," Inverse Problems, Vol. 20, No. 6, 1819-184, Dec. 2004.

36. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, Germany, 2006.

37. Monk, P., D. Colton, and K. Giebermann, "A regularized sampling method for solving three dimensional inverse scattering problems," SIAM J. Sci. Comput., Vol. 21, 2316-2330, 2000.

38. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. on Antennas and Propag., Vol. 55, 1431-1436, 2007.

39. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.

40. Marklein, R., K. J. Langenberg, K. Mayer, J. Miao, A. Shlivinski, A. Zimmer, W. MÄuller, V. Schmitz, C. Kohl, and U. Mletzko, "Recent applications and advances of numerical modeling and wavefield inversion in nondestructive testing," Adv. Radio Sci., Vol. 3, 167-174, 2005.

41. Pierri, R., A. Liseno, and F. Soldovieri, "Shape reconstruction from PO multifrequency scattered fields via the singular value decomposition approach," IEEE Trans. on Antennas and Propag., Vol. 49, No. 9, 1333-1343, Sep. 2001.

42. Pierri, R., A. Liseno, R. Solimene, and F. Soldovieri, "Beyond physical optics SVD shape reconstruction of metallic cylinders," IEEE Trans. on Antennas and Propag., Vol. 54, No. 2, 655-665, Feb. 2006.

43. Liseno, A., F. Soldovieri, and R. Pierri, "Improving a shape reconstruction algorithm with thresholds and multi-view data," Int. J. Electron. Commun., Vol. 58, No. 2, 118-124, Mar.-Apr. 2004.

44. Liseno, A., F. Tartaglione, and F. Soldovieri, "Shape reconstruction of 2-D buried objects under a Kirchhoff approximation," IEEE Geosci. Remote Sens. Letters, Vol. 1, No. 2, 118-121, Apr. 2004.

45. Soldovieri, F., A. Brancaccio, G. Prisco, G. Leone, and R. Pierri, "A Kirchhoff-based shape reconstruction algorithm for the multimonostatic configuration: The realistic case of buried pipes," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 10, 3031-3038, Oct. 2008.

46. Solimene, R., A. Buonanno, F. Soldovieri, and R. Pierri, "Physical optics imaging of 3D PEC objects: Vector and multipolarized approaches," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 4, 1799-1808, Apr. 2010.

47. Robinson, D. A. and S. P. Friedman, "The effective permittivity of dense packing of glass beads, quartz sand and their mixtures immersed in different dielectric backgrounds," J. Non-Crystalline Solids, Vol. 305, No. 1-3, 261-267, Jul. 2002.

48. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resources Res., Vol. 16, 574-582, Mar. 1980.

49. Pettinelli, E., A. Cereti, A. Galli, and F. Bella, "Time domain re°ectometry: Calibration techniques for accurate measurement of dielectric properties of various materials," Rev. Sci. Instrum., Vol. 73, 3553-3562, 2002.

50. Mattei, E., A. De Santis, A. Di Matteo, E. Pettinelli, and G. Vannaroni, "Time-domain reflectometry of glass beads/magnetite mixtures: A time and frequency domain study," Applied Physics Lett., Vol. 86, No. 22, 224102-3, May 2005.

51. PulseEkko Pro User Guide, , Sensors and Software, Inc., Canada, 2006.

52. CST Microwave Studio Manual, , CST, Germany, 2002.

53. Tikhonov, A. N. and V. Y. Arsenin, "Solution of Ill-Posed Problems," Winston and Wiley, Washington, DC, USA, 1977.

54. Golub, G. H. and C. F. van Loan, Matrix Computations, 3rd Ed., Johns Hopkins Univ. Press, Baltimore, MD, USA , 1996.

© Copyright 2010 EMW Publishing. All Rights Reserved