Vol. 49
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-02-19
Formulation of Multiwire Magnetic Transmission-Line Theory
By
Progress In Electromagnetics Research B, Vol. 49, 177-195, 2013
Abstract
Time- and frequency-domain theory of multiwire magnetic transmission lines is presented for the first time. The familiar theory of electric multiconductor transmission lines (MTL) is based on the manipulation of two matrices, the longitudinal impedance and the transverse admittance. However, for magnetic MTLs, the key matrices are the transverse impedance and the longitudinal admittance. It is shown how the latter matrices are defined and how they should be used to determine the modal propagation constants and modal characteristic wave admittances that characterize the various travelling wave modes of magnetic MTLs. The theory is illustrated considering a three-wire system with three-fold symmetry. Simulation results, in the range 0.1 GHz to 10 GHz, are presented, showing that the magnetic MTL can exhibit superluminal phase velocity and zero attenuation dispersion.
Citation
Jose Antonio Marinho Brandao Faria, "Formulation of Multiwire Magnetic Transmission-Line Theory," Progress In Electromagnetics Research B, Vol. 49, 177-195, 2013.
doi:10.2528/PIERB12122810
References

1. Pipes, L. A., "Matrix theory of multiconductor transmission lines," Phil. Mag. S. 7, Vol. 24, 97-113, 1937.

2. Rice, S. O., "Steady state solutions of transmission line equations," Bell Syst. Tech. J., Vol. 20, 131-178, 1941.
doi:10.1002/j.1538-7305.1941.tb03599.x

3. Wedepohl, L. M., "Application of matrix methods to the solution of travelling-wave phenomena in polyphase systems," Proc. Inst. Elect. Eng., Vol. 10, 2200-2212, 1963.
doi:10.1049/piee.1963.0314

4. Hedman, D. E., "Propagation on overhead transmission lines, I --- Theory of modal analysis," IEEE Trans. Power App. Syst., Vol. 84, 1877-1884, 1965.

5. Dommel, H. W. and W. S. Meyer, "Computation of electromagnetic transients," Proceedings of the IEEE, Vol. 62, 983-993, 1974.
doi:10.1109/PROC.1974.9550

6. Gary, C., "Approche complete de la propagation multifilaire en haute frequence par utilization des matrices complexes," EDF Bulletin de la Direction des Etudes et Recherches, Vol. 3-4, 5-20, 1976.

7. Brandao Faria, J. A. and J. B. da Silva, "Wave propagation in polyphase transmission lines: A general theory to include cases where ordinary modal theory fails," IEEE Trans. Power Del., Vol. 1, 743-764, 1987.

8. Djordjevic, A. R., T. K. Sarkar, and E. F. Harrington, "Time-domain response of multiconductor transmission lines," Proceedings of the IEEE, Vol. 75, 643-764, 1987.
doi:10.1109/PROC.1987.13797

9. Khan, O. D., A. Z. Elsherbeni, C. E. Smith, and D. Kajfez, "Characteristics of cylindrical multiconductor transmission lines above a perfectly conducting ground plane," Progress In Electromagnetics Research, Vol. 15, 191-220, 1997.
doi:10.2528/PIER95111600

10. Trakadas, P. T. and C. N. Capsalis, "Validation of a modified FDTD method on non-uniform transmission lines," Progress In Electromagnetics Research, Vol. 31, 311-329, 2001.
doi:10.2528/PIER00071705

11. Brandao Faria, J. A., "A new generalized modal analysis theory for nonuniform multiconductor transmission lines," IEEE Trans. Power Syst., Vol. 18, 926-933, 2004.
doi:10.1109/TPWRS.2004.826726

12. Khalaj-Amirhosseini, M., "Analysis of coupled or single nonuniform transmission lines using Taylor's series expansion," Progress In Electromagnetics Research, Vol. 60, 107-117, 2006.
doi:10.2528/PIER05101901

13. D·edkova, J. and L. Brancik, "Laplace transform and FDTD approach applied to MTL simulation," PIERS Online, Vol. 4, No. 1, 16-20, 2008.

14. Brandao Faria, J. A. and M. P. Pires, "Theory of magnetic transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 60, 2941-2949, 2012.
doi:10.1109/TMTT.2012.2210439

15. Brand~ao Faria, J. A., "A physical model of the ideal transformer based on magnetic transmission line theory," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 3, 2013.

16. Brandao Faria, J. A. M., "Complex reluctance of inhomogeneous Euler-Cauchy tubular ferrites taking into account frequency-dependent complex permeability," Progress In Electromagnetics Research M, Vol. 25, 71-85, 2012.

17. Kerns, Q. A., "Transient-suppressing magnetic transmission line,", Patent US 3376523, Apr. 1968.

18. Brand~ao Faria, J. A., "Dispositivo formado por uma linha magnetica de transmissao para uso em circuitos integrados para aplicacoes na tecnologia terahertz [Magnetic transmission line device for terahertz integrated circuits],", Patent PT 106056, Dec. 2011.

19. Brandao Faria, J. A., Electromagnetic Foundations of Electrical Engineering, Wiley, Chichester, 2008.
doi:10.1002/9780470697498

20. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley, New York, 1994.

21. Brandao Faria, J. A., "Multiconductor Transmission-line Structures: Modal Analysis Techniques," Wiley, New York, 1993.

22. Brandao Faria, J. A., "On the time-domain transmission-line equations," Microw. Opt. Tech. Letters, Vol. 22, 194-197, 1999.
doi:10.1002/(SICI)1098-2760(19990805)22:3<194::AID-MOP12>3.0.CO;2-2

23. Papaleonidopoulos, I., C. Karagiannopoulos, C. Anagnostopoulos, and N. Theodorou, "A theoretical justification of the two-conductor HF transmission-line model for indoor single-phase low voltage triplex cables," Proc. 7th Int. Symp. Power-line Communications Appl., 114-119, Kyoto, Japan, Mar. 2003.

24. Brandao Faria, J. A. and M. G. Neves, "Accurate evaluation of indoor triplex cable capacitances taking conductor proximity effects into account," IEEE Trans. Power Del., Vol. 21, 1238-1244, 2006.
doi:10.1109/TPWRD.2005.860233

25. Ramo, S., J. Whinnery, and T. Van Duzer, Fields and Waves in Communications Electronics, 2nd Ed., Wiley, Singapore, 1984.