PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 49 > pp. 319-337

ASYMMETRICAL EFFECTS OF BI-ANISOTROPIC SUBSTRATE-SUPERSTRATE SANDWICH STRUCTURE ON PATCH RESONATOR

By C. Zebiri, M. Lashab, and F. Benabdelaziz

Full Article PDF (364 KB)

Abstract:
Few works on symmetric and asymmetric dielectrics have been published, specifically the case of chiral and bi-isotropic media. For this reason, and taking into account the complexity of the studied environment, this paper treats the asymmetrical effects on the resonant frequency and the bandwidth of a rectangular microstrip patch antenna in a complex bi-anisotropic substrate-superstrate configuration. This structure is studied theoretically, and the obtained results are discussed and commented. The numerical analysis used in this paper is mainly employed in order to obtain original results. The originality of this work is presented by the bianisotropic chiral asymmetry and the combined effect of the substrate and the superstrate.

Citation:
C. Zebiri, M. Lashab, and F. Benabdelaziz, "Asymmetrical Effects of BI-Anisotropic Substrate-Superstrate Sandwich Structure on Patch Resonator," Progress In Electromagnetics Research B, Vol. 49, 319-337, 2013.
doi:10.2528/PIERB13012115

References:
1. Ramahi, O. M. and Y. T. Lo, "Superstrate effect on the resonant frequency of microstrip antennas," Microwave and Optic. Tech. Letts., Vol. 5, No. 6, 254-257, 1992.
doi:10.1002/mop.4650050603

2. Attia, H., L. Yousefi, and O. M. Ramahi, "Analytical model for calculating the radiation field of microstrip antennas with artificial magnetic superstrates: Theory and experiment," IEEE Trans. Antennas Propagat., Vol. 59, No. 5, 1438-1445, 2011.
doi:10.1109/TAP.2011.2122295

3. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propagat., Vol. 32, No. 8, 807-816, 1984.
doi:10.1109/TAP.1984.1143433

4. Biswas, M. and D. Guha, "Input impedance and resonance characteristic of superstrate loaded triangular microstrip patch," IET Microwaves, Antennas Propagat., Vol. 3, No. 1, 92-98, 2009.
doi:10.1049/iet-map:20080097

5. Mirshekar-Syankal, D. and H. R. Hassani, "Characteristics of stacked rectangular and triangular patch antennas for dual band application," 8th IEE Int. Conf. Antennas and Propagat., Vol. 2, 728-731, 1993.

6. Guha, D. and J. Y. Siddiqui, "Resonant frequency of circular microstrip antenna covered with dielectric superstrate," IEEE Trans. Antennas Propagat., Vol. 51, No. 7, 1649-1652, 2003.
doi:10.1109/TAP.2003.813620

7. Shinde, J., P. Shinde, R. Kumar, M. D. Uplane, and B. K. Mishra, "Resonant frequencies of a circularly polarized nearly circular annular ring microstrip antenna with superstrate loading and airgaps," Kaleidoscope: Beyond the Internet? --- Innovations for Future Networks and Services, 2010 ITU-T, 1-7, Dec. 13-15, 2010.

8. Foroozesh, A. and L. Shafai, "Effects of artificial magnetic conductors in the design of low-profile high-gain planar antennas with high permittivity dielectric superstrate," IEEE Antenna Wireless Propagat. Lett., Vol. 8, 10-13, 2009.
doi:10.1109/LAWP.2008.916684

9. Valagiannopoulos, C. A. and N. L. Tsitsas, "On the resonance and radiation characteristics of multi-layered spherical microstrip antennas," Electromagnetics, Vol. 28, No. 4, 243-264, 2008.
doi:10.1080/02726340802040096

10. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Trans. Antennas Propagat., Vol. 58, No. 2, 258-270, 2010.
doi:10.1109/TAP.2009.2037702

11. Uslenghi, P. L. E., "TE-TM decoupling for guided propagation in bianisotropic media," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 284-286, 1997.
doi:10.1109/8.560347

12. Pozar, D. M., "Radiation and scattering from a microstrip patch on a uniaxial substrate," IEEE Trans. Antennas Propagat., Vol. 35, No. 6, 613-621, 1987.
doi:10.1109/TAP.1987.1144161

13. Vettikalladi, H., O. Lafond, and M. Himdi, "High-efficient and high-gain superstrate antenna for 60-GHz indoor communication," IEEE Antenna Wireless Propagat. Lett., Vol. 8, 1422-1425, 2009.
doi:10.1109/LAWP.2010.2040570

14. Mittra, R., Y. Li, and K. Yoo, "A comparative study of directivity enhancement of microstrip patch antennas with using three different superstrates," Microwave and Optic. Tech. Letts., Vol. 52, No. 2, 327-331, 2010.
doi:10.1002/mop.24898

15. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 224-235, 2005.
doi:10.1109/TAP.2004.840521

16. Attia, H. and O. M. Ramahi, "EBG superstrate for gain and bandwidth enhancement of microstrip array antennas," Proceeding of IEEE AP-S Int. Symp. Antennas Propagat., 1-4, San Diego, CA, 2008.

17. Korkontzila, E. G., D. B. Papafilippou, and D. P. Chrissoulidis, "Miniaturization of microstrip patch antenna for wireless applications by use of multilayered electromagnetic band gap substrate," 1st European Conference on Antennas and Propagat., EuCAP, 1-6, 2006.

18. Jha, K. R. and G. Singh, "Microstrip patch antenna on photonic crystal substrate at terahertz frequency," Applied Electromagnetics Conference (AEMC), 1-4, 2009.
doi:10.1109/AEMC.2009.5430725

19. De, A., N. S. Raghava, S. Malhotra, P. Arora, and R. Bazaz, "Effect of different substrates on compact stacked square microstrip antenna," Journal of Telecommunications, Vol. 1, No. 1, 63-65, Feb. 2010.

20. Boutayeb, H. and T. A. Denidni, "Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate," IEEE Trans. Antennas Propagat., Vol. 55, No. 11, 3140-3145, 2007.
doi:10.1109/TAP.2007.908818

21. Yang, H. Y. D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band gap materials for high gain printed circuit antennas," IEEE Trans. Antennas Propagat., Vol. 45, No. 1, 185-187, 1997.
doi:10.1109/8.554261

22. Attia, H., L. Yousefi, O. Siddiqui, and O. M. Ramahi, "Analytical formulation of the radiation field of printed antennas in the presence of artificial magnetic superstrates," Applied Physics A, Vol. 103, No. 3, 877-880, 2011.
doi:10.1007/s00339-010-6227-6

23. Yang, G. M., X. Xing, O. Obi, A. Daigle, M. Liu, S. Stoute, K. Naishadham, and N. X. Sun, "Loading effects of self-biased magnetic films on patch antennas with substrate/superstrate sandwich structure," IET Microwaves, Antennas Propagat., Vol. 4, No. 9, 1172-1181, 2010.
doi:10.1049/iet-map.2009.0429

24. Dixit, L. and P. K. S. Pourush, "Radiation characteristics of witchable ferrite microstrip array antenna," IEE Proc. Microwave and Antennas Propagat., Vol. 147, No. 2, 151-155, 2000.
doi:10.1049/ip-map:20000038

25. Batchelor, J. C. and R. J. Langley, "Beam scanning using microstrip line on biased ferrite," Electronic Lett., Vol. 33, No. 8, 645-646, 1997.
doi:10.1049/el:19970459

26. Ufimtsev, P. Y., R. T. Ling, and J. D. Scholler, "Transformation of surface waves in homogenous absorbing layers," IEEE Trans. Antennas Propagat., Vol. 48, No. 2, 214-222, 2000.
doi:10.1109/8.833070

27. Horsfield, B. and J. A. R. Ball, "Surface wave propagation on a grounded dielectric slab covered by a high{permittivity material," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 5, 171-173, 2000.
doi:10.1109/75.850367

28. Saxena, N. K., N. Kumar, and P. K. S. Pourush, "Microstrip rect-angular patch antenna printed on liti ferrite with perpendicular DC magnetic biasing," The Journal of American Science, Vol. 6, No. 3, 46-52, 2010.

29. Zebiri, , C., M. Lashab, F. Benabdelaziz, and , "Effect of anisotropic magneto-chirality on the characteristics of a microstrip resonator," IET Microwaves, Antennas Propagat., Vol. 4, No. 4, 446-452, 2010.
doi:10.1049/iet-map.2008.0439

30. Zebiri, C., M. Lashab, and F. Benabdelaziz, "Rectangular microstrip antenna with uniaxial bi-anisotropic chiral substrate-superstrate," IET Microwaves, Antennas Propagat., Vol. 5, No. 1, 17-29, 2011.
doi:10.1049/iet-map.2009.0446

31. Liu, D., H. C. Chen, and B. Floyd, "An LTCC superstrate patch antenna for 60-GHz package applications," IEEE Antennas and Propagat. Society International Symposium (APSURSI), 1-4, 2010.

32. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterial as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

33. Jackson, D. R., "The RCS of a rectangular microstrip patch in a substrate-superstrate geometry," IEEE Trans. Antennas Propagat., Vol. 38, No. 1, 2-8, 1990.
doi:10.1109/8.43583

34. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher order MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

35. Thakare, Y. B. and Rajkumar, "Design of fractal patch antenna for size and radar cross-section reduction," IET Microwaves, Antennas Propagat., Vol. 4, No. 2, 175-181, 2010.
doi:10.1049/iet-map.2008.0325

36. Engheta, N., "The theory of chirostrip antennas," Proceedings of the 1988 URSI International Radio Science Symposium, 213, Syracuse, New York, 1988.

37. Engheta, N. and P. Pelet, "Modes in chirowaveguides," Optics Letters, Vol. 14, No. 11, 593-595, 1989.
doi:10.1364/OL.14.000593

38. Engheta, N. and P. Pelet, "Reduction of surface waves in chirostrip antennas," Electronics Letters, Vol. 27, No. 1, 5-7, 1991.
doi:10.1049/el:19910004

39. Herman, W.-N., "Polarization eccentricity of the transverse field for modes in chiral core planar waveguides," Journal of the Optical Society of America A: Optics, Image Science and Vision, Vol. 18, No. 11, 2806-2818, 2001.
doi:10.1364/JOSAA.18.002806

40. Bahar, E., "Mueller matrices for waves re┬░ected and transmitted through chiral materials: Waveguide modal solutions and applications," Journal of the Optical Society of America B, Vol. 24, No. 7, 1610-1619, 2007.
doi:10.1364/JOSAB.24.001610

41. Al Sharkawy, M., A. Z. Elsherbeni, and S. F. Mahmoud, "Electromagnetic scattering from parallel chiral cylinders of circular cross sections using an iterative procedure," Progress In Electromagnetics Research, Vol. 47, 87-110, 2004.
doi:10.2528/PIER03102101

42. Kong, J. A., Electromagnetic Waves Theory, EMW Publishing, Cambridge, MA, USA, 2005.

43. Yang, H.-Y. and P. L. E. Uslenghi, "Planar bianisotropic waveguides," Radio Science, Vol. 28, No. 5, 919-927, 1993.
doi:10.1029/93RS00904

44. O'Dell, T. H., The Electrodynamics of Magnetoelectric Media, Amsterdam, North-Holland, 1970.

45. Graglia, R. D., P. L. E. Uslenghi, and R. E. Zich, "Dispersion relation for bianisotropic materials and its symmetry properties," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 83-90, 1991.
doi:10.1109/8.64440

46. Graglia, R. D., P. L. E. Uslenghi, and R. E. Zich, "Reflection and transmission for planar structures of bianisotropic media," Electromagnetics, Vol. 11, 193-208, 1991.
doi:10.1080/02726349108908273

47. Al-Kanhal, M. A. and E. Arvas, "Electromagnetic scattering from a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 44, No. 7, 1041-1048, 1996.
doi:10.1109/8.504313

48. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE Antennas Propagat. Soc. Newsletter, Vol. 30, No. 5, 6-12, 1988.
doi:10.1109/MAP.1988.6086107

49. Mahmoud, S. F., "Mode characteristics in chirowaveguides with constant impedance walls," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 5-6, 625-640, 1992.
doi:10.1163/156939392X01354

50. Graglia, R. D., P. L. E. Uslenghi, and C. L. Yu, "Electromagnetic oblique scattering by a cylinder coated with chiral layers and anisotropic jump-admittance sheets," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1, 695-719, 1992.

51. Sheng, X. Q. and Y. Ekn, "Analysis of microstrip antennas on finite chiral substrates," International Journal of RF and Microwave Computer-aided Engineering, Vol. 14, No. 1, 49-56, 2004.
doi:10.1002/mmce.10115

52. Kamenetskii, E. O., "Nonreciprocal microwave bianisotropic materials: Reciprocity theorem and network reciprocity," IEEE Trans. Antennas Propagat., Vol. 49, No. 3, 361-366, 2001.
doi:10.1109/8.918609

53. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Taylor & Francis, 2001.

54. Cheng, X., J. A. Kong, and L. Ran, "Polarization of waves in reciprocal and nonreciprocal uniaxially bianisotropic media," PIERS Online, Vol. 4, No. 3, 331-335, 2008.
doi:10.2529/PIERS071112222851

55. Kluskens, M. S. and E. H. Newman, "A microstrip line on a chiral substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 11, 1889-1891, 1991.
doi:10.1109/22.97493

56. Kluskens, M. S. and E. H. Newman, "Method of moments analysis of scattering by chiral media,", Defense Technical Information Center, Ft. Belvoir, 1991.
doi:10.1109/22.97493

57. Plaza, G., F. Mesa, and M. Horno, "Study of the dispersion characteristics of planar chiral lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 8, 1150-1157, 1998.
doi:10.1109/22.704958

58. Lakhtakia, A. and W. Weiglhofer, "Constraint on linear, spatiotemporally nonlocal, spatiotemporally nonhomogenous constitutive relations," International Journal of Infrared and Millimeter Waves, Vol. 17, No. 11, 1867-1878, 1996.
doi:10.1007/BF02069461

59. Krowne, C. M., "Demonstration of marginal nonreciprocity in linear bi-isotropic material and comparison to ferrite material," Proc. Bianisotropics'97, Int. Conf. and Workshop Electromagnetics Complex Media, 261-264, Glasgow, Scotland, 1997.

60. Uslenghi, P. L. E., "Theory of certain bianisotropic waveguides," Proc. URSI Int. Symp. Electromagnetic Th. Proc., 293-295, Sydney, Australia, 1992.

61. Yang, H.-Y. and P. L. E. Uslenghi, "Planar bianisotropic waveguides," Radio Science, Vol. 28, No. 5, 919-927, 1993.
doi:10.1029/93RS00904

62. Toscano, A. and L. Vegni, "Analysis of printed-circuit antennas with chiral substrates with the method of lines," IEEE Trans. Antennas Propagat, Vol. 49, No. 1, 48-54, 2001.
doi:10.1109/8.910529

63. Wong, K.-L., J.-S. Row, C.-W. Kuo, and K.-C. Huang, "Resonance of a rectangular microstrip patch on a uniaxial substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 698-701, Apr. 1993.
doi:10.1109/22.231667

64. Bouttout, F., F. Benabdelaziz, T. Fortaki, and D. Khedrouche, "Resonant frequency and bandwidth of a superstrate-loaded rect-angular patch on a uniaxial anisotropic substrate," Communications in Numerical Methods in Engineering, Vol. 16, No. 7, 459-473, John Wiley & Sons, Jul. 2000.
doi:10.1002/1099-0887(200007)16:7<459::AID-CNM343>3.0.CO;2-7

65. Pozar, D. M., "General relations for a phased array of printed antennas derived from infinite current sheets," IEEE Trans. Antennas Propagat., Vol. 33, 498-504, May 1985.
doi:10.1109/TAP.1985.1143620

66. Harokopus, W. P., L. P. B. Katehi, W. Y. Ali-Ahmed, and G. M. Rebiez, "Surface wave excitation from open microstrip discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 1098-1107, Jul. 1991.
doi:10.1109/22.85375


© Copyright 2010 EMW Publishing. All Rights Reserved