Vol. 51
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-03-06
Wireless Communications in a Tree Canopy
By
Progress In Electromagnetics Research B, Vol. 51, 329-346, 2013
Abstract
The wireless communications in a tree canopy is essential for pre-harvesting control of fruit productions. To efficiently communicate between a sensor node and a sink node, channel characteristics in a tree canopy must be well-established. In this paper, propagation channel characteristics at the frequencies of 2.45 and 5.2 GHz have been estimated for designing a wireless communication system in a tree canopy. The proposed solution is based on measured path loss, time-varying signal strength and Angle of Arrival (AoA) for various paths in a tree canopy to estimate the channel. Since the waves reflect, refract, diffract and scatter from the foliage, it is complicated to find the true travelling path between a transmitter and a receiver at the nodes. The AoA estimator is used for physical interpretation of the channel. The experimental results demonstrate the channels in a tree canopy are mostly matched with the General Extreme Value model. The measured path gains illustrate that the appropriate antenna patterns must be selected to enhance the reliability of the system.
Citation
Pobsook Sooksumrarn, Chainarong Kittiyanpunya, Paiboon Yoiyod, and Monai Krairiksh, "Wireless Communications in a Tree Canopy," Progress In Electromagnetics Research B, Vol. 51, 329-346, 2013.
doi:10.2528/PIERB13020104
References

1. Akyildiz, F., W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor network: Survey," Computer Network, Vol. 38, 393-422, 2002.
doi:10.1016/S1389-1286(01)00302-4

2. Ochiai, H., H. Ishizuka, Y. Kawakami, and H. Esaki, "A DTN-based sensor data gathering for agricultural applications," IEEE Sensor Journal, Vol. 11, No. 11, 2861-2868, Nov. 2011.
doi:10.1109/JSEN.2011.2170562

3. Alejos, A. V., M. G. Sánchez, I. Cuiñas, and J. C. G. Valladares, "Sensor area network for active RTLS in RFID tracking applications at 2.4 GHz ," Progress In Electromagnetics Research, Vol. 110, 43-58, 2010.
doi:10.2528/PIER10100204

4. Krairiksh, M., J. Varith, and A. Kanjanavapastit, "Wireless sensor network for monitoring maturity stage of fruit," Science Research/Wireless Sensor Network, Vol. 3, 318-321, 2011.
doi:10.4236/wsn.2011.39034

5. De Jong, Y. L. C. and M. H. A. Herben, "A tree-scattering model for improved propagation prediction in urban microcells," IEEE Trans. on Vehicular Technology, Vol. 53, No. 2, 503-513, Mar. 2004.
doi:10.1109/TVT.2004.823493

6. Chee, K. L., S. A. Torrico, and T. Kurner, "Foliage attenuation over mixed terrains in rural areas for broadband wireless access at 3.5 GHz," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 7, 2698-2706, Jul. 2011.
doi:10.1109/TAP.2011.2152340

7. Au, W. C., L. Tsang, R. T. Shin, and J. A. Kong, "Collective scattering and absorption effects in microwave interaction with vegetation canopies," Progress In Electromagnetics Research, Vol. 14, 181-23, 1996.

8. De Matthaeis, P. and R. H. Lang, "Microwave scattering models for cylindrical vegetation components," Progress In Electromagnetics Research, Vol. 55, 307-333, 2005.
doi:10.2528/PIER05040602

9. Bultitude, R. J. C., "Measured characteristics of 800/900MHz fading radio channels with high angle propagation through moderately dense foliage," IEEE Journal on Selected Areas in Communications, Vol. 5, No. 2, 116-127, Feb. 1987.
doi:10.1109/JSAC.1987.1146517

10. Dalley, J. E. J., M. S. Smith, and D. N. Adams, "Propagation losses due to foliage at various frequencies," National Conference on Antennas and Propagation Publication, No. 461, 267-270, Mar.-Apr. 1999.

11. Lewenz, R., "Path loss variation due to vegetation movement," National Conference on Antennas and Propagation Publication, No. 461, 97-100, Mar.-Apr. 1999.

12. Perras, S. and L. Bouchard, "Fading characteristics of RF signals due to foliage in frequency bands from 2 to 60 GHz," Proc. 5th Int. Symp. Wireless Personal Multimedia Commun., 267-271.

13. Cuiñas, I., A. V. Alejos, M. G. Sánchez, P. Gómez, and R. F. S. Caldeirinha, "Wind effect on the scattering from vegetation at cellular phone frequencies," Proc. of International Geoscience and Remote Sensing Symposium, 369-372, 2007.

14. Pelet, E. R., J. E. Salt, and G. Wells, "Effect of wind on foliage obstructed line of-sight channel at 2.5 GHz," IEEE Trans. on Broadcasting, Vol. 50, No. 3, 224-232, Sep. 2004.
doi:10.1109/TBC.2004.834014

15. Hashim, M. H. and S. Starou, "Measurements and modeling of wind in°uence on radiowave propagation through vegetation," IEEE Trans. on Wireless Communications, Vol. 5, No. 5, 1055-1064, May 2006.
doi:10.1109/TWC.2006.1633358

16. Meng, Y. S., Y. H. Lee, and B. H. Ng, "Investigation of rainfall effect on forested radio wave propagation," IEEE Trans. on Antennas and Wireless Propagation Letters, Vol. 7, 159-162, 2008.
doi:10.1109/LAWP.2008.922052

17. Meng, Y. S., Y. H. Lee, and B. C. Ng, "The effects of tropical weather on radio-wave propagation over foliage channel," IEEE Trans. on Vehicular Technology, Vol. 58, No. 8, 4023-4030, Oct. 2009.
doi:10.1109/TVT.2009.2021480

18. Meng, Y. S. and Y. H. Lee, "Investigations of foliage effect on modern wireless communication systems: A review," Progress In Electromagnetics Research, Vol. 105, 313-332, 2010.
doi:10.2528/PIER10042605

19. Blaunstein, N., D. Censor, D. Katz, A. Freedman, and I. Matityahu, "Radio propagation in rural residential areas with vegetation ," Progress In Electromagnetics Research, Vol. 40, 131-153, 2003.
doi:10.2528/PIER02083003

20. Gay-Fernández, J. A., M. G. Sánchez, I. Cuiñas, A. V. Alejos, J. G. Sánchez, and J. L. Milanda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

21. Alejos, A. V., M. Dawood, and L. Medina, "Experimental dynamical evolution of the Brillouin precursor for broadband wireless communication through vegetation," Progress In Electromagnetics Research, Vol. 111, 291-309, 2011.
doi:10.2528/PIER10100706

22. Morgadinho, S., R. F. S. Caldeirinha, M. O. Al-Nuaimi, I. Cuiñas, M. C. Sancház, T. R. Fernandes, and J. Richter, "Time-variant radio channel characterization and modelling of vegetation media at millimeter-wave frequency," IEEE Trans. on Antennas and Propagation, Vol. 60, No. 3, 1557-1568, Mar. 2012.
doi:10.1109/TAP.2011.2180301

23. Sooksumrarn, P. and M. Krairiksh, "UHF wireless communication channel in a tree canopy," Proc. of International Symposium on Antennas and Propagation, 311-314, Oct.-Nov. 2012.

24. Kamarudin, M. R., Y. I. Nechayev, and P. S. Hall, "Onbody diversity and angle-of-arrival measurement using a pattern switching antenna," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 4, 964-971, Apr. 2009.
doi:10.1109/TAP.2009.2014597

25. Sooksumrarn, P. and M. Krairiksh, "Dual-band mobile angle of arrival estimator," Proc. of Asia-Pacific Microwave Conference, 729-732, Dec. 2010.

26. Torrico, S. A. and R. H. Lang, "A simplified analytical model to predict the specific attenuation of a tree canopy," IEEE Trans. on Vehicular Technology, Vol. 56, No. 2, 696-703, Mar. 2007.
doi:10.1109/TVT.2007.891485

27. Saunders, S. R. and A. A. Zavala, Antennas and Propagation for Wireless Communication Systems, 2nd Ed., John Wiley, 2007.

28. Cuiñas, I., J. A. Gay-Fernández, P. Gómez, A. V. Alejos, and M. G. Sánchez, "Radioelectric propagation in mature wet forests at 5.8 GHz," Proc. of IEEE International Symposium on Antennas and Propagation Society, 2009.