Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 50 > pp. 201-217


By G. K. Pandey, H. S. Singh, P. K. Bharti, and M. K. Meshram

Full Article PDF (1,833 KB)

A WLAN band notched compact ultra-wideband (UWB) microstrip monopole antenna with stepped geometry is proposed. A L-slot loaded modified mushroom type Electromagnetic Band Gap (EBG) is designed, analyzed and used to realize notched band characteristics for wireless local area network (WLAN) in the UWB frequency range. The proposed antenna having partial ground plane is fabricated on a low cost FR4 substrate having dimensions 40 ( Lsub ) × 30 (Wsub ) × 1.6 (h) mm3 and is fed by a 50-Ω microstrip line. The results show that the proposed antenna achieves impedance bandwidth (VSWR < 2) from 2.3 GHz to 11.4 GHz with band notched characteristics (VSWR > 2) from 4.9 GHz to 6 GHz. Fidelity factor for proposed antenna is also analyzed to characterize time domain behavior. Simulation and measurement results of VSWR are found in good agreement.

G. K. Pandey, H. S. Singh, P. K. Bharti, and M. K. Meshram, "Design of WLAN Band Notched UWB Monopole Antenna with Stepped Geometry Using Modified EBG Structure," Progress In Electromagnetics Research B, Vol. 50, 201-217, 2013.

1. Fedral Communication Commission, "First order and report: Revision of part 15 of the Commision's rules regarding UWB transmission systems,", 2002.

2. Agrawall, , N., , G. Kumar, and K. Ray, "Wide-band planar monopole antennas," IEEE Transactions on Antennas and Propagation , Vol. 46, No. 2, 294-295, 1998.

3. Clerk, , J., , J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500-3504, 2005.

4. Ling, , C. W., , W. H. Lo, R.-H. Yan, and S. J. Chung, "Planar bi-nomial curved monopole antennas for ultrawideband communication," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, 2622-2624, 2007.

5. Kan, , Y. C., C. C. Lin, and H. R. Chuang, "A 3--12 GHz UWB planar triangular monopole antenna with ridged ground-plane," Progress In Electromagnetics Research, Vol. 83, 307-321, 2008.

6. Xu, , H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, No. 35--50, 35-50, 2011.

7. Liang, , J., C. C. Chiau, X. Chen, and C. G. Parini, "Printed circular disc monopole antenna for ultra wideband applications," Electronics Letters, Vol. 40, No. 20, 1246-1248, 2004.

8. Dong, , Y. D., , W. Hong, Z. Q. Kuai, C. Yu, Y. Zhang, J. Y. Zhou, and J. X. Chen, "Development of ultra-wideband antenna with multiple band notched characteristics using half mode substrate integrated waveguide cavity technology,", Vol. 56, No. 9, 2894-2902, 2008.

9. Fallahi, , R., , A. A. Kalteh, and M. Golparvar Roozbahani, "A novel UWB elliptical slot antenna with band-notched characteristics," Progress In Electromagnetics Research , Vol. 82, 127-136, 2008.

10. Ryu, , K. S. and A. A. Kishk, "UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band," IEEE Transactions on Antennas and Propagation , Vol. 57, No. 12, 3942-3950, 2009.

11. Yang, Y. B., , F. S. Zhang, F. Zhang, L. Zhang, and Y. C. Jiao, "Design of novel wideband monopole antenna with a tunable notched-band for 2.4 GHz WLAN and UWB applications," Progress In Electromagnetics Research Letters, Vol. 13, 93-102, 2010.

12. Islam, , M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012.

13. Chuang, , C. T., , T. Ju Lin, and S. J. Chung, "A band-notched UWB monopole antenna with high notch-band-edge selectivity," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4492-4499, 2012.

14. Mishra, , S. K., , R. Gupta, A. Vaidya, and J. Mukherjee, "Printed fork shaped dual band monopole antenna for bluetooth and UWB applications with 5.5 GHz WLAN band notched characteristics," Progress In Electromagnetics Research C , Vol. 22, 195-210, 2011.

15. Yang, , F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.

16. Bianconi, , G., , F. Costa, S. Genovesi, and A. Monorchio, "Optimal design of dipole antenna backed by finite high-impedance screen," Progress In Electromagnetics Research C, Vol. 18, 137-151, 2011.

17. Makinen, , R., V. Pynttari, J. Heikkinen, and M. Kivikoski, "Improvement of antenna isolation in hand-held devices using miniaturized electromagnetic bandgap structures," Microwave and Optical Technology Letters, Vol. 49, No. 10, 2508-2513.

18. Peng, , L. and C. L. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structure," IEEE Transactions on Microwave Theory and Techniques59, Vol. 59, No. 4, 1074-1081, 2011.

19. Yazdi, , M. and N. Komjani, "Design of a band-notched UWB monopole antenna by means of an EBG structure," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 170-173, 2011.

20. Li, , T., , H. Q. Zhai, G. H. Li, and C. H. Liang, "Design of compact UWB band-notched antenna by means of electromagnetic-bandgap structures," Electronic Letters,, Vol. 48, No. 11, 2012.

21. Xu, , F., , Z. X. Wang, X. Chen, and X. A. Wang, "Dual band-notched UWB antenna based on spiral electromagnetic-bandgap structure," Progress In Electromagnetics Research B, Vol. 39, 393-409, 2012..

22., "Ansoft's HFSS,".

23., "CST MWS,".

24. Balanis, , C. A., Antenna Theory: Analysis and Design, , 3rd Ed., 811-876, Wiley India Edition, 2012.

25. Schantz, , H. G., "Radiation effciency of UWB antennas," IEEE Conference on Ultra Wideband Systems and Technologies, 2002.

© Copyright 2010 EMW Publishing. All Rights Reserved