PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 237-251

NOVEL ABSORBERS BASED ON WIDEBAND ANTENNA ARRAY FOR RCS REDUCTION

By F.-Y. Kuo, P.-S. Wang, C.-Y. Chin, and R.-B. Hwang

Full Article PDF (475 KB)

Abstract:
This study presents a novel wideband absorber for radar cross section (RCS) reduction. Unlike previous absorber designs that use multilayer lossy materials, this study proposes a design based on a planar antenna array that adopts a bowtie dipole structure as the unit cell. The complete design procedure was investigated by using examples for single- and dual-polarized incident wave designs. The measurement results show that the bandwidth of both designs exceeded 81% of 10 dB RCS reduction when the thickness is less than 12% of the free space wavelength at the lowest operating frequency. The high RCS reduction of the proposed absorbers was demonstrated using commercial ground-penetrating radar. Results show that the proposed absorber is invisible to radar.

Citation:
F.-Y. Kuo, P.-S. Wang, C.-Y. Chin, and R.-B. Hwang, "Novel Absorbers Based on Wideband Antenna Array for RCS Reduction," Progress In Electromagnetics Research B, Vol. 52, 237-251, 2013.
doi:10.2528/PIERB13031806

References:
1. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

2. Zhang, Y., R. Mittra, and B. Wang, "Novel design for low-RCS screens using a combination of dual-AMC," IEEE Antennas and Propagation Society International Symposium (APSURSI' 09), 1-4, 2009.
doi:10.1155/2009/830931

3. Zhang, , Y., R. Mittra, B. Z. Wang, and N. T. Huang, "AMCs for ultra-thin and broadband RAM design," Electronics Letters, Vol. 45, No. 10, 484-485, 2009.
doi:10.1049/el.2009.3161

4. Tsai, Y. and R. Hwang, "RCS reduction of a composite AMC structure," IEEE International Workshop on Electromagnetics Applications and Student Innovation (iWEM 2011), 210-213, 2011.

5. Knott, E., J. Shaeffer, and M. Tuley, Radar Cross Section, SciTech Publishing, 2004.

6. Salisbury, W. W., "Absorbent body for electromagnetic waves," US Patent No. 2599944, 1952.

7. Landy, N., S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

8. Lee, , J. and S. Lim, "Bandwidth-enhanced and polarisation-sensitive metamaterial absorber using double resonance," Electronics Letters, Vol. 47, No. 1, 8-9, 2011.
doi:10.1049/el.2010.2770

9. Wang, T., Z. Liao, H. Luo, and R. Gong, "Magnetic resonance coupling for extending perfect absorbance bandwidth at microwave frequencies," IEEE International Conference on Ultra-Wideband (ICUWB 2010) , Vol. 2, 1-4, 2010.
doi:10.1109/ICUWB.2010.5614779

10. Abdalla, M. A., "Experimental verification of a triple band thin radar absorber metamaterial for oblique incidence applications," Progress In Electromagnetics Research Letters,, Vol. 39, 63-72, 2013.

11. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research , Vol. 115, 381-397, 2011.

12. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012.

13. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research , Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

14. Li, M., H. Yang, X. Hou, Y. Tian, and D. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

15. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

16. Seman, F., R. Cahill, and V. Fusco, "Performance enhancement of salisbury screen absorber using a resistively loaded high impedance ground plane ," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP 2010), 1-5, 2010.

17. Seman, F. and R. Cahill, "Performance enhancement of salisbury screen absorber using resistively loaded spiral FSS," Microwave and Optical Technology Letters, Vol. 53, No. 7, 1538-1541, 2011.
doi:10.1002/mop.26040

18. Seman, F., R. Cahill, V. Fusco, and G. Goussetis, "Design of a salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance," IET Microwaves, Antennas & Propagation, Vol. 5, No. 2, 149-156, 2011.
doi:10.1049/iet-map.2010.0072

19. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

20. Pang, Y.-Q., Y.-J. Zhou, and J.Wang, "Equivalent circuit method analysis of the in°uence of frequency selective surface resistance on the frequency response of metamaterial absorbers," Journal of Applied Physics , Vol. 110, No. 2, 023704-1-023704-5, 2011.
doi:10.1063/1.3608169

21. Lee, W., J. Lee, and C. Kim, "Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band," Composites Science and Technology, Vol. 68, No. 12, 2485-2489, 2008.
doi:10.1016/j.compscitech.2008.05.006

22., "CST studio suite 2012,".
doi:http://www.cst.com

23. Hwang, R.-B., Periodic Structures: Mode-matching Approach and Applications in Electromagnetic Engineering, Wiley-IEEE Press Publishing, 2012.
doi:10.1002/9781118188040

24. Rashid, A., Z. Shen, and R. Mittra, "On the optimum design of a single-layer thin wideband radar absorber," IEEE International Symposium on Antennas and Propagation (APSURSI 2011), 2916-2919, 2011.
doi:10.1109/APS.2011.5997138


© Copyright 2010 EMW Publishing. All Rights Reserved