Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 37-56


By M. M. Mahmoud Ali, A. A. R. Saad, and E. E. M. Khaled

Full Article PDF (503 KB)

A design and analysis of a novel proximity-fed printed slot antenna with 3.5/5.5 GHz dual band-notched characteristics are presented. To obtain an ultra-wideband (UWB) response, a circular patch with a rectangular conjunction arm is etched concentrically inside a ground plane aperture. The antenna is proximity-fed by a microstrip line with an open shunt stub on the other side of the substrate. The designed antenna satisfies a -10 dB return loss requirement in the frequency band from 2.7 to 17 GHz. In order to obtain dual band-notched properties at 3.5 and 5.5 GHz, an open ring slot is etched off the circular patch and a π-shaped slot is etched off the microstrip feeding line, respectively. A curve fitting formulation is obtained to describe the influences of the notched resonators on the corresponding notched frequencies. The proposed antenna is designed, simulated and fabricated. The measured data show a good agreement with the simulated results and the equivalent circuit results through the use of a modified Vector Fitting technique for a rational function approximation. The proposed antenna provides almost omnidirectional radiation patterns, relatively flat gain and high radiation efficiency over the entire UWB frequency excluding the two rejected bands.

M. M. Mahmoud Ali, A. A. R. Saad, and E. E. M. Khaled, "A Design of Miniaturized Ultra–Wideband Printed Slot Antenna with 3.5/5.5 GHz Dual Band–Notched Characteristics: Analysis and Implementation," Progress In Electromagnetics Research B, Vol. 52, 37-56, 2013.

1., "Federal Communications Commission Revision of Part 15 of the Commission's Rule Regarding Ultra-Wideband Transmission System, FCC, First Report and Order FCC,", 2-48, 2002.

2. Khaled, E. E. M., A. A. R. Saad, and D. A. Salem, "A proximity-fed annular slot antenna with different a band-notch manipulations for ultra-wideband applications," Progress In Electromagnetics Research B, Vol. 37, 289-306, 2012.

3. Dissanayake, T. and K. P. Esselle, "Prediction of the notch frequency of slot loaded printed UWB antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3320-3325, 2007.

4. Abbosh, M., M. E. Bialkowski, J. Mazierska, and M. V. Jacob, "A planar UWB antenna with signal rejection capability in the 4--6 GHz Band ," IEEE Micro. Wireless Comp. Lett. , Vol. 16, No. 5, 278-280, 2006.

5. Liu, X., Y. Yin, P. Liu, J. Wang, and B. Xu, "A CPW-Fed dual band-notched UWB antenna with a pair of bended dual-L-shape parasitic branches," Progress In Electromagnetics Research, Vol. 136, 623-634, 2013.

6. Mandal, T. and S. Das, "An optimal design of CPW-fed UWB aperture antennas with WiMAX/WLAN notched band characteristics," Progress In Electromagnetics Research C,, Vol. 35, 161-175, 2013.

7. Li, W. M., T. Ni, S. M. Zhang, J. Huang, and Y. C. Jiao, "UWB printed slot antenna with dual band-notched characteristic," Progress In Electromagnetics Research Letters, Vol. 25, 143-151, 2011.

8. Li, C. M. and L. H. Ye, "Improved dual band-notched UWB slot antenna with controllable notched bandwidths," Progress In Electromagnetics Research, Vol. 115, 477-493, 2011.

9. Li, W.-M., T. Ni, T. Quan, and Y.-C. Jiao, "A compact CPW-fed UWB antenna with WiMAX-band notched characteristics," Progress In Electromagnetics Research Letters, Vol. 26, 79-85, 2011.

10. Sun, J.-Q., X.-M. Zhang, Y.-B. Yang, R. Guan, and L. Jin, "Dual band-notched ultra-wideband planar monopole antenna with M- and W-slots," Progress In Electromagnetics Research Letters , Vol. 1, 1-8, 2010.

11. Tu, S., Y. C. Jiao, Y. Song, B. Yang, and X. Z. Wang, "A novel monopole dual band-notched antenna with tapered slot for UWB applications," Progress In Electromagnetics Research Letters, Vol. 10, 49-57, 2009.

12. Zhang, J., S. W. Cheung, and T. I. Yuk, "CPW-coupled-fed elliptical monopole UWB antenna with dual-band notched characteristic," PIERS Proceedings, 823-827, 2012.

13. Gao, G. P., Z. L. Mei, and B. N. Li, "Novel circular slot UWB antenna With dual band-notched characteristic," Progress In Electromagnetics Research C, Vol. 15, 49-63, 2010.

14. Yang, G., Q.-X. Chu, and T.-G. Huang, "A compact UWB antenna with sharp dual band-notched characteristics for lower and upper WLAN band," Progress In Electromagnetics Research C , 135-148, 2012.

15. Mishra, S. K. and J. Mukherjee, "Compact printed dual band-notched U-shape UWB antenna," Progress In Electromagnetics Research C, Vol. 27, 169-181, 2012.

16. Lui, W. J., C. H. Cheng, and H. B. Zhu, "Compact frequency notched ultra-wideband fractal printed slot antennas," IEEE Micro. Wireless Comp. Lett., Vol. 16, No. 4, 224-226, 2006.

17. Lui, W. J., C. H. Cheng, Y. Cheng, and H. Zhu, "Frequency notched ultra-wideband microstrip Slot antenna with fractal tuning stub," Electron. Lett., Vol. 41, No. 6, 294-296, 2005.

18. Karmakar, A., S. Verma, M. Pal, and R. Ghatak, "An ultra wideband monopole antenna with multiple fractal slots with dual band rejection characteristics," Progress In Electromagnetics Research C, Vol. 31, 185-197, 2012.

19. Ali , J. K., A. J. Salim, A. I. Hammoodi, and H. Alsaedi, "An ultra-wideband printed monopole antenna with a fractal based reduced ground plane," PIERS Proceedings, 613-617, 2012.

20. Kim, D.-O., N.-I. Jo, D.-M. Choi, and C.-Y. Kim, "Design of the ultra-wideband antenna with 5.2 GHz/5.8 GHz band rejection using rectangular split-ring resonators (SRRS) loading," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17--18, 2503-2512, 2009.

21. Kim, J., C. S. Cho, and J. W. Lee, , "5.2 GHz notched ultra-wideband antenna using slot-type SRR," Electron. Lett., Vol. 42, 315-316, 2006.

22. Liu, L., Y. Z. Yin, C. Jie, J. P. Xiong, and Z. Cui, "A compact printed antenna using slot-type CSRR for 5.2GHz/5.8GHz band-notched UWB application," Microw. Opt. Techn. Lett., Vol. 50, 3239-3242, 2008.

23. Yin, X. C., C. L. Ruan, C. Y. Ding, and J. H. Chu, "A compact ultra-wideband microstrip antenna with multiple notches," Progress In Electromagnetics Research, Vol. 84, 321-332, 2008.

24. Lai, H.-Y., Z.-Y. Lei, Y.-J. Xie, G.-L. Ning, and K. Yang, "UWB antenna with dual band rejection for WLAN/WiMAX bands using CSRRs," Progress In Electromagnetics Research Letters, Vol. 26, 69-78, 2011.

25. Zhang, Y., W. Hong, C. Yu, Z.-Q. Kuai, Y.-D. Don, and J.-Y. Zhou, "Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 3063-3068, 2008.

26. Xu , F., Z. X. Wang, X. Chen, and X.-A. Wang, "Dual band-notched UWB antenna based on spiral electromagnetic-bandgap structure," Progress In Electromagnetics Research B, Vol. 39, 393-409, 2012.

27. Saad, A. A. R., D. A. Salem, and E. E. M. Khaled, "5.5 GHz notched ultra-wideband printed monopole antenna characterized by electromagnetic band gap structures," International Journal of Electronics and Communication Engineering (IJECE), Vol. 1, No. 1, 1-12, 2012.

28., "MATLAB Program," The MathWorksTM, Inc., 2010.

29. Zeng, R. and J. Sinsky, "Modified rational function modeling technique for high speed circuits ," IEEE MTT-S Inter. Microw. Symp. Digest, 1951-1954, 2006.

30. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. Power Delivery,, Vol. 14, 1052-1061, 1999.

31. Ren, W., "A new circuit modeling methodology for RFID antennas with vector fitting technique," 6th Intern. Conf. Wireless Comm. Networking and Mobile Computing (WiCOM),, 1-4, 2010.

32. Antonini, G., "SPICE equivalent circuits of frequency-domain responses," IEEE Trans. Electrom. Compatibility, Vol. 45, No. 3, 502-512, 2003.

33. Gustavsen, B. and A. Semlyen, "Enforcing passivity for admittance matrices approximated by rational functions," IEEE Trans. Power System, Vol. 16, 97-104, 2001.

34. Hickman, I., " Analog Circuits Cookbook, ,", 1999.

35. DeJean, G. R. and M. M. Tentzeris, "The application of lumped element equivalent circuits approach to the design of single-port microstrip antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2472-2468, 2007.

© Copyright 2010 EMW Publishing. All Rights Reserved