PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 347-362

MUTUAL COUPLING CALIBRATION FOR ELECTROMAGNETIC VECTOR SENSOR

By L. Wang, G. Wang, and C. Zeng

Full Article PDF (273 KB)

Abstract:
A subspace self-calibration ESPRIT algorithm for mutual coupling across an electromagnetic vector sensor is proposed in this paper. By introducing an auxiliary array element, the mutual coupling is calibrated. The whole array's mutual coupling matrix can be obtained simultaneously. A mathematic model for mutual coupling across the six collocated antennas of an electromagnetic vector sensor is established. And the solution of mutual coupling matrix was transformed into the solution of several matrix elements. The Cramer-Rao Lower Bound (CRLB) is also derived in the end of this paper to verify the efficacy of the proposed algorithm. The simulation results demonstrate that this approach is correct and effective.

Citation:
L. Wang, G. Wang, and C. Zeng, "Mutual Coupling Calibration for Electromagnetic Vector Sensor," Progress In Electromagnetics Research B, Vol. 52, 347-362, 2013.
doi:10.2528/PIERB13042004

References:
1. Nehorai, A. and E. Paldi, "Superresolution compact array radio location technology (SuperCART) project," Asilomar Conf., 566-572, 1991.

2. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Trans. on Signal Processing, Vol. 42, No. 2, 376-398, 1994.
doi:10.1109/78.275610

3. Li, J., "Direction and polarization estimation using arrays with small loops and short dipoles," IEEE Trans. Antennas Propagat., Vol. 41, No. 3, 379-387, 1993.
doi:10.1109/8.233120

4. Wong, K. T. and M. D. Zoltowski, "Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations ," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 671-681, 2000.
doi:10.1109/8.855485

5. Wong, K. T. and M. D. Zoltowski, "Root-Music-based direction finding and polarization estimation using diversely polarized possibly collocated antennas," IEEE Antennas and Wireless Propagation Letter, Vol. 3, 129-132, 2004.
doi:10.1109/LAWP.2004.831083

6. Xu, Z. and X. Yuan, "Cramer-Rao bounds of angle-of-arrival & polarisation estimation for various triads," IET Microwaves, Antennas & Propagation, Vol. 6, No. 15, 1651-1664, 2012.
doi:10.1049/iet-map.2012.0030

7. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1467-1474, 1997.
doi:10.1109/8.633852

8. Jiang, J. F. and J. Q. Zhang, "Geometric algebra of Euclidean 3-space for electromagnetic vector-sensor array processing, Part I: modeling," EE Trans. Antennas Propagat., Vol. 58, No. 12, 3961-3973, 2010.
doi:10.1109/TAP.2010.2078468

9. Xiao, J. J. and A. Nehorai, "Optimal polarized beampattern synthesis using a vector antenna array," IEEE Trans. on Signal Processing, Vol. 57, No. 2, 576-587, 2009.
doi:10.1109/TSP.2008.2007107

10. Gong, X. F., Z. W. Liu, and Y. G. Xu, "Regularised parallel actor analysis for the estimation of direction-of-arrival and polarisation with a single electromagnetic vector-sensor," IET Signal Processing, Vol. 5, No. 4, 390-396, 2011.
doi:10.1049/iet-spr.2009.0221

11. Sun, L., G. Ou, and Y. Lu, "Vector sensor cross-product for direction of arrival estimation," International Congress on Image and Signal Processing, 1-5, 2009.

12. Wong, K. T. and M. D. Zoltowski, "Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations," Proc. IEEE. Int. Conf. Acoust. Speech Signal Processing, Vol. 4, 1945-1952, 1998.

13. Tan, K. C., K. C. Ho, and A. Nehorai, "Linear independence of steering vectors of an electromagnetic vector sensor," IEEE Trans. on Signal Processing, Vol. 44, No. 12, 3099-3107, 1996.
doi:10.1109/78.553483

14. Nehorai, A. and P. Tichavsky, "Cross-product algorithms for source tracking using an EM vector sensor," IEEE Trans. on Signal Processing, Vol. 47, No. 2, 2863-2867, 1999.
doi:10.1109/78.790667

15. Yuan, X., "Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor," IEEE Trans. on Signal Processing, Vol. 60, No. 3, 1270-1282, 2012.
doi:10.1109/TSP.2011.2177263

16. Yuan, X., "Polynomial-phase signal source-tracking using an electromagnetic vector-sensor," IEEE. Int. Conf. Acoust. Speech Signal Processing (ICASSP) , 2577-2580, 2012.

17. Wong, K. T. and X. Yuan, "Vector cross-product direction-¯nding with an electromagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles/loops," IEEE Trans. on Signal Processing, Vol. 59, No. 1, 160-171, 2011.
doi:10.1109/TSP.2010.2084085

18. Zhang, Y., Q. Wan, and A. M. Huang, "Localization of narrow band sources in the presence of mutual coupling via sparse solution finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
doi:10.2528/PIER08090703

19. Mohammadian, A. H., S. S. Soliman, M. A. Tassoudji, and L. Golovanevsky, "A closed-form method for predicting mutual coupling between base-station dipole arrays," IEEE Trans. on ehicular Technology, Vol. 56, No. 3, 1088-1099, 2007.
doi:10.1109/TVT.2007.895542

20. Wang, , Q. and Q. Q. He, "An arbitrary conformal array pattern synthesis method that includes mutual coupling and platform effects," Progress In Electromagnetics Research , Vol. 110, 297-311, 2010.
doi:10.2528/PIER10092204

21. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.

22. Kerkhoff , A. J. and L. Hao, "A simplified method for reducing mutual coupling effects in low frequency radio telescope phased arrays," IEEE Trans. Antennas and Propagat., Vol. 59, No. 6, 1838-1845, 2011.

23. Yousefzadeh, N., C. Ghobadi, and M. Kamyab, "Consideration of mutual coupling in a microstrip patch array using fractal elements," Progress In Electromagnetics Research, Vol. 66, 41-49, 2006.

24. Yu, Y., H. S. Lui, C. H. Niow, and H. T. Hui, "Improved DOA estimations using the receiving mutual impedances for mutual coupling compensation: An experimental study," IEEE Transactions on Wireless Communications, Vol. 10, No. 7, 2228-2233, 2011.

25. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

26. Sellone, F. and A. Serra, "An iterative algorithm for the compensation of toeplitz mutual coupling in uniform and linear arrays," Digital Signal Processing Workshop, 12th --- 4th Signal Processing Education Workshop, 438-443, 2006.

27. Wang, B. H., Y. L. Wang, and C. Hui, "A robust DOA estimation algorithm for uniform linear array in the presence of mutual coupling," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 924-927, 2003.

28. Yuan, X., K. T. Wong, and K. Agrawal, "Polarization estimation with a dipole-dipole pair, a dipole-loop pair, or a loop-loop pair of various orientations," IEEE Trans. Antennas Propagat., Vol. 60, No. 5, 2442-2452, 2012.

29. Miron, S., N. L. Bihan, and J. I. Mars, "Quaternion-MUSIC for vector-sensor array processing," IEEE Trans. on Signal Processing, Vol. 54, No. 4, 1218 -1229, 2006.

30. Yuan, X., "Cramer-Rao bound of the direction-of-arrival estimation using a spatially spread electromagnetic vector-sensor," IEEE Statistical Signal Processing Workshop, 1-4, 2011.

31. Bihan, N. L., S. Miron, and J. I. Mars, "MUSIC algorithm for vector-sensors array using biquaternions," IEEE Trans. on Signal Processing , Vol. 55, No. 9, 4523-4533, 2007.

32. Wong, K. T., "Direction finding/polarization estimation-dipole and/or loop triad(s)," IEEE Trans. Aerosp. Electron. Syst., Vol. 37, No. 2, 679-684, 2001.

33. Gong, X. F., Z. W. Liu, and Y. G. Xu, "Coherent source localization: Bicomplex polarimetric smoothing with electromagnetic vector-sensors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 3, 2268-2285, 2011.

34. Luo, F. and X. Yuan, "Enhanced `vector-cross-product' direction-¯nding using a constrained sparse triangular-array," EURASIP Journal on Advances in Signal Processing, Vol. 2012, No. 1, 1-11, 2012.
doi:doi:10.1186/1687-6180-2012-115

35. He, J. and Z. Liu, "Computationally effcient two-dimensional direction-of-arrival estimation of electromagnetic sources using the propagator method," IET Radar, Sonar and Navigation, Vol. 3, No. 5, 437-448, 2009.

36. Yuan, X., K. T. Wong, Z. Xu, and K. Agrawal, "Various compositions to form a triad of collocated dipoles/loops, for direction finding & polarization estimation," IEEE Sensors Journal, Vol. 12, No. 6, 1763-1771, 2012.

37. Liu, Z., J. He, and Z. Liu, "Computationally effcient DOA and polarization estimation of coherent sources with linear electromagnetic vector-sensor array," EURASIP Journal on Advances in Signal Processing, Vol. 2011, 1-10, 2011.

38. Yuan, X., "Quad compositions of collocated dipoles and loops: For direction finding and polarization estimation," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1044-1047, 2012.

39. Sun, L., B. Li, Y. Lu, and G. Ou, "Distributed vector sensor cross product added with MUSIC for direction of arrival estimation," Asia-Pacific International Symposium on Electromagnetic Compatibility, 1354-1357, 2010.


© Copyright 2010 EMW Publishing. All Rights Reserved