PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 54 > pp. 149-166

POLYVINYL-ALCOHOL (PVA)-BASED RF HUMIDITY SENSOR IN MICROWAVE FREQUENCY

By E. M. Amin, N. C. Karmakar, and B. Winther-Jensen

Full Article PDF (756 KB)

Abstract:
A highly sensitive, passive relative humidity (RH) sensor using polyvinyl-alcohol (PVA) dielectric film is presented. For the first time, PVA is investigated in microwave RF sensing devices for low cost, high resolution and accurate chipless RH sensor realization. Comparative study with traditional humidity sensing Kapton polymer is presented to validate superior performance of PVA film. Results are presented for two different passive high Q resonators to validate sensing performance in wide applications. Moreover, a new sensing parameter is described to investigate sensitivity measurement through resonance frequency and Q factor variation. The RH sensor has the potential to be integrated with mm and μm-wave high frequency passive RFID for ubiquitous sensing.

Citation:
E. M. Amin, N. C. Karmakar, and B. Winther-Jensen, "Polyvinyl-Alcohol (Pva)-Based RF Humidity Sensor in Microwave Frequency," Progress In Electromagnetics Research B, Vol. 54, 149-166, 2013.
doi:10.2528/PIERB13061716

References:
1. Traversa, E., "Ceramic sensors for humidity detection: The state-of-the-art and future developments," Sensors and Actuators B: Chemical, Vol. 23, 135-156, 1995.
doi:10.1016/0925-4005(94)01268-M

2. Sakai, Y., et al., "Humidity sensors based on polymer thin films," Sensors and Actuators B: Chemical, Vol. 35, 85-90, 1996.
doi:10.1016/S0925-4005(96)02019-9

3. Ansbacher, F. and A. C. Jason, "Effects of water vapour on the electrical properties of anodized aluminium," Nature, Vol. 171, 177-178, 1953.
doi:10.1038/171177b0

4. Chen, Z., et al., "Humidity sensors with reactively evaporated Al2O3 films as porous dielectrics," Sensors and Actuators B: Chemical, Vol. 2, 167-171, 1990.
doi:10.1016/0925-4005(90)85001-F

5. Rittersma, Z. M., et al., "A novel surface-micromachined capacitive porous silicon humidity sensor," Sensors and Actuators B: Chemical, Vol. 68, 210-217, 2000.
doi:10.1016/S0925-4005(00)00431-7

6. Harpster, T. J., et al., "A passive wireless integrated humidity sensor," Sensors and Actuators A: Physical, Vol. 95, 100-107, 2002.
doi:10.1016/S0924-4247(01)00720-8

7. Yang, M.-R. and K.-S. Chen, "Humidity sensors using polyvinyl alcohol mixed with electrolytes," Sensors and Actuators B: Chemical, Vol. 49, 240-247, 1998.
doi:10.1016/S0925-4005(98)00134-8

8. Penza, M. and G. Cassano, "Relative humidity sensing by PVA-coated dual resonator SAW oscillator," Sensors and Actuators B: Chemical, Vol. 68, 300-306, 2000.
doi:10.1016/S0925-4005(00)00448-2

9. Chen, Y. T. and H. L. Kao, "Humidity sensors made on polyvinyl-alcohol film coated saw devices," Electronics Letters, Vol. 42, 948-949, 2006.
doi:10.1049/el:20061216

10. Sengwa, R. J. and K. Kaur, "Dielectric dispersion studies of poly (vinyl alcohol) in aqueous solutions," Polymer International, Vol. 49, 1314-1320, 2000.
doi:10.1002/1097-0126(200011)49:11<1314::AID-PI479>3.0.CO;2-8

11. Amin, E. M. and N. C. Karmakar, "Development of a low cost printable humidity sensor for chipless RFID technology," 2012 IEEE International Conference on RFID-technologies and Applications (RFID-TA), 165-170, 2012.
doi:10.1109/RFID-TA.2012.6404504

12. Amin, E. M., et al., "Towards an intelligent EM barcode," 2012 7th International Conference on Electrical & Computer Engineering (ICECE), 826-829, 2012.
doi:10.1109/ICECE.2012.6471678

13. Girbau, D., et al., "Passive wireless temperature sensor based on time-coded UWB chipless RFID tags," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3623-3632, 2012.
doi:10.1109/TMTT.2012.2213838

14. Virtanen, J., et al., "Inkjet-printed humidity sensor for passive UHF RFID systems," IEEE Transactions on Instrumentation and Measurement, Vol. 60, 2768-2777, 2011.
doi:10.1109/TIM.2011.2130070

15. Chen, Z. and C. Lu, "Humidity sensors: A review of materials and mechanisms," Sensor Letters, Vol. 3, 2005.
doi:10.1166/sl.2005.045

16. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Wiley, 2001.

17. Gevorgian, S., et al., "CAD models for shielded multilayered CPW," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 772-779, 1995.
doi:10.1109/22.375223

18. Ogura, K., et al., "The humidity dependence of the electrical conductivity of a solublepolyaniline-poly (vinyl alcohol) composite film," Journal of Materials Chemistry, Vol. 7, 2363-2366, 1997.
doi:10.1039/a705463g

19. Sagawa, M., et al., "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 1078-1085, 1997.
doi:10.1109/22.598444

20. Zhang, H. and K. J. Chen, "A tri-section stepped-impedance resonator for cross-coupled bandpass filters," IEEE Microwave and Wireless Components Letters, Vol. 15, 401-403, 2005.
doi:10.1109/LMWC.2005.850475

21. Zhang, H. and K. J. Chen, "Miniaturized coplanar waveguide bandpass filters using multisection stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 1090-1095, 2006.
doi:10.1109/TMTT.2005.864126

22. Schurig, D., et al., "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, 041109, 2006.
doi:10.1063/1.2166681

23. Yeow, Y. K., K. Khalid, and M. Z. A. Rahman, "Improved dielectric model for polyvinyl alcohol-water hydrogel at microwave frequencies," American Journal of Applied Sciences, 2010.

24. Ralston, A. R. K., et al., "A model for the relative environmental stability of a series of polyimide capacitance humidity sensors," The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers'95, 821-824, 1995.
doi:10.1109/SENSOR.1995.721965


© Copyright 2010 EMW Publishing. All Rights Reserved