Vol. 58
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-01-09
Analysis of Microstrip Line Feed Slot Loaded Patch Antenna Using Artificial Neural Network
By
Progress In Electromagnetics Research B, Vol. 58, 35-46, 2014
Abstract
In this article, the parametric analysis of the slot-loaded microstrip line feed patch antenna is investigated using artificial neural network model. The bandwidths of the proposed antenna obtained at TM01, TM02, and TM03 frequency modes are 10.2 GHz, 13.6 GHz, and 17.2 GHz, respectively. The performance of the proposed antenna is analysed using artificial neural network model. The changes obtained in bandwidth due to the position of slot length and slot width are reported. The antenna parameters such as return loss, VSWR, gain and efficiency are also calculated. The simulated results obtained with the help of IE3D simulation software are trained and tested using ANN. Theoretical results are compared with simulated and experimental ones, and they are in close agreement.
Citation
Mohammad Aneesh, Jamshed Ansari, Ashish Singh, Kamakshi, and Saiyed Salim Sayeed, "Analysis of Microstrip Line Feed Slot Loaded Patch Antenna Using Artificial Neural Network," Progress In Electromagnetics Research B, Vol. 58, 35-46, 2014.
doi:10.2528/PIERB13111105
References

1. Kumar, G. and K. P. Ray, Broadband Microstrip Antenna, Artech House, US, 2003.

2. Vegni, L. and A. Toscano, "Analysis of microstrip antennas using neural networks," IEEE Trans. Magn., Vol. 33, No. 2, 1414-1419, Mar. 1997.
doi:10.1109/20.582522

3. Mishra, R. K. and A. Patnaik, "Neural network-based CAD model for the design of square-patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 12, 1890-1891, Dec. 1998.
doi:10.1109/8.743842

4. Patnaik, A. R., K. Mishra, G. K. Patra, and S. K. Dash, "An artificial neural network model for effective dielectric constant of microstrip line," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1697, Nov. 1997.
doi:10.1109/8.650084

5. Mishra, R. K. and A. Patnaik, "Designing rectangular patch antenna using the neuro spectral method," IEEE Transactions on Antennas and Propagation,", Vol. 51, No. 8, 1914-1921, Aug. 2003.
doi:10.1109/TAP.2003.814748

6. Guney, K. and N. Sarikaya, "Comparison of MAMDANI and Sugeno fuzzy inference system models for resonant frequency calculation of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 12, 81-104, 2009.
doi:10.2528/PIERB08121302

7. Watso, P. M. and K. C. Gupta, "Design and optimization of CPW circuits using EM ANN models for CPW components," IEEE Trans. Microwave Theory Techniques, Vol. 45, No. 12, 2515-2523, Dec. 1997.
doi:10.1109/22.643868

8. Zaabab, A. H., Q. J. Zhang, and M. Nakhla, "Analysis and optimization of microwave circuits & devices using neural network models," IEEE MTT-S Digest, Vol. 1, 393-396, 1994.

9. Naser-Moghaddasi, M., P. D. Barjoei, and A. Naghsh, "Heuristic artificial neural network for analysing and synthesizing rectangular microstrip antenna," IJCSNS International Journal of Computer Science and Network Security, Vol. 7, No. 12, 278-281, Dec. 2007.

10. TÄaurker, N., F. Gaunes, and T. Yildirim , "Artificial neural design of microstrip antennas," Turk. J. Elec. Engin., Vol. 14, No. 3, 445-453, 2006.

11. Peik, S. E., G. Coutts, and R. R. Mansour, "Application of neural networks in microwave circuit modelling," IEEE Canadian Conference on Electrical and Computer Engineering, Vol. 2, 928-931, May 1998.

12. Devi, S., D. C. Panda, and S. S. Pattnaik, "A novel method of using artificial neural networks to calculate input impedance of circular microstrip antenna ," Antennas and Propagation Society International Symposium, Vol. 3, 462-465, Jun. 2002.

13. Karaboga, D., K. Guney, S. Sagiroglu, and M. Erler, "Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas," IEEE Proceedings, Microwaves, Antennas and Propagation, Vol. 146, No. 2, 155-159, Apr. 1999.
doi:10.1049/ip-map:19990136

14. Guney, K. and N. Sarikaya, "Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms ," Progress In Electromagnetic Research, Vol. 72, 279-306, 2007.
doi:10.2528/PIER07031302

15. Pattnaik, S. S., D. C. Panda, and S. Devi, "Radiation resistance of coax-fed rectangular microstrip antenna using artificial neural networks," Microwave and Optical Technology Lett., Vol. 34, No. 1, 51-53, Jul. 2002.
doi:10.1002/mop.10370

16. Thakare, V. V. and P. K. Singhal, "Bandwidth analysis by introducing slots in microstrip antenna design using ANN," Progress In Electromagnetics Research M, Vol. 9, 107-122, 2009.
doi:10.2528/PIERM09093002

17. Bahal, I. J. and P. Bhartia, Microstrip Antennas, Artech House, Boston, MA, 1985.

18. Pandey, V. K. and B. R. Vishvakarma, "Theoretical analysis of linear array antenna of stacked patches," Indian J. Radio & Space Phys., Vol. 3, 125-127, 2005.

19. Meshram, M. K. and B. R. Vishvakarma, "Gap-coupled microstrip array antenna for wide band operation," Int. J. Electronics, Vol. 88, 1161-1175, 2001.
doi:10.1080/00207210110071288

20. Wang, E., J. Zheng, and Y. Liu, "A novel dualband patch antenna for WLAN communication," Progress In Electromagnetics Research C, Vol. 6, 289-291, 2009.

21. Wolf, E. A., Antenna Analysis, Artech house, Narwood, US, 1998.

22. Ansari, J. A., A. Mishra, and B. R. Vishvakarma, "Half U-slot loaded semicircular disk patch antenna for GSM mobile phone and optical communications," Progress In Electromagnetics Research C, Vol. 18, 31-45, 2011.

23. Aneesh, M., J. A. Ansari, A. Singh, K. Kamakshi, and S. Verma, "RBF Neural Network Modeling of Rectangular Microstrip Patch Antenna," 2012 Third International Conference on Computer Comm. Technology, 241-244, 2012.
doi:Doi: 10.1109/ICCCT.2012.56

24. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates," Journal of Electromagnetic Waves and Applications, No. 1, 23-39, 2004.
doi:10.1163/156939304322749599

25. "IE3D simulation software, Version 14.05," Zeeland, 2008.