Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 60 > pp. 227-239


By N. K. Bourgis and T. V. Yioultsis

Full Article PDF (1,000 KB)

In this paper, a new electrically small metamaterial-inspired monopole antenna is presented. The antenna consists of a simple square-shaped coplanar waveguide (CPW-fed) monopole with an embedded complementary split ring resonator (CSRR). It operates at three distinct frequency ranges with central frequencies around 2.45, 4.2, and 5.8 GHz, exhibiting low return loss and uniform radiation patterns, making it a perfect candidate for modern wireless applications. Furthermore, using this antenna as a primary unit to construct two different 2×2 MIMO system configurations, we achieve systematic minimization of mutual coupling between the radiation elements around 2.45 GHz, using additional single negative (SNG) metamaterial inspired resonators. Mutual coupling is reduced by as much as 27 dB at the aforementioned frequency. The simulated and measured results of all the fabricated antennas are in good agreement.

N. K. Bourgis and T. V. Yioultsis, "Efficient Isolation Between Electrically Small Metamaterial-Inspired Monopole Antennas," Progress In Electromagnetics Research B, Vol. 60, 227-239, 2014.

1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.

4. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.

5. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.

6. LiHou, L., J. Y. Chin, X.M.Yang, X. Q. Lin, R. Liu, F. Y. Xu, and T. J.Cui, "Advanced parameter retrievals for metamaterial slabs using an inhomogeneous model," J. Appl. Phys., Vol. 103, No. 6, 064904, 2008.

7. Qureshi, F., M. A. Antoniades, and G. V. Eleftheriades, "A compact and low-profile metamaterial ring antenna with vertical polarization," IEEE Antennas Wireless Propag. Lett., Vol. 4, 333-336, 2005.

8. Alici, K. B. and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys., Vol. 101, No. 8, 083104, 2007.

9. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-707, 2008.

10. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-negative metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.

11. Zhu, J. and G. V. Eleftheriades, "Dual-band metamaterial-inspired small monopole antenna for WiFi applications," Electron. Lett., Vol. 45, No. 22, 1104-1106, 2009.

12. Herraiz-Martınez, F. J., L. E. Garcıa-Munoz, D. Gonzalez-Ovejero, V. Gonzalez-Posadas, and D. Segovia-Vargas, "Dual-frequency printed dipole loaded with split ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 8, 137-140, 2009.

13. Antoniades, M. A. and G. V. Eleftheriades, "A broadband dual-mode monopole antenna using NRI-TL metamaterial loading," IEEE Antennas Wireless Propag. Lett.,, Vol. 8, 258-261, 2009.

14. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, 2010.

15. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 963-966, 2011.

16. Ye, D., S. Xi, H. Chen, J. Huangfu, and L.-X. Ran, "Achieving large effective aperture antenna with small volume based on coordinate transformation," Progress In Electromagnetics Research, Vol. 111, 407-418, 2011.

17. Wang, P., G.-J. Wen, Y.-J. Huang, and Y.-H. Sun, "Compact CPW-fed planar monopole antenna with distinct triple bands for WiFi/WiMAX applications," Electron. Lett., Vol. 48, No. 7, 357-359, 2012.

18. Li, K., C. Zhu, L. Li, Y.-M. Cai, and C.-H. Liang, "Design of electrically small metamaterial antenna with ELC and EBG loading," IEEE Antennas Wireless Propag. Lett., Vol. 12, 678-681, 2013.

19. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martın, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, 2004.

20. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R.Marques, F. Martın, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, No. 19, 197401, 2004.

21. Baena, J. D., J. Bonache, F. Martın, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcıa- Garcıa, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1451-1461, 2005.

22. Anguera, J., A. Andujar, M.-C. Huynh, C. Orlenius, C. Picher, and C. Puente, "Advances in antenna technology for wireless handheld devices," International Journal of Antennas and Propagation, Vol. 2013, Article ID 838364, 2013.

23. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 311-355, 1998.

24. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, No. 4, 149-172, 1987.

25. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.

26. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjani, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, 2010.

27. Coulombe, M., S. F. Koodiani, and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1076-1086, 2010.

28. Zhu, J. and G. V. Eleftheriades, "A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 379-382, 2010.

29. Han, X., H. Hafdallah-Ouslimani, T. Zhang, and A. C. Priou, "CSRRs for efficient reduction of the electromagnetic interferences and mutual coupling in microstrip circuits," Progress In Electromagnetics Research B, Vol. 42, 291-309, 2012.

30. Han, M. and J. Choi, "Multiband MIMO antenna using orthogonally polarized dipole elements for mobile communications," Microw. Opt. Techn. Lett., Vol. 53, No. 9, 2043-2048, 2011.

31. Park, S. and C. Jung, "Compact MIMO antenna with high isolation performance," Electron. Lett., Vol. 46, No. 6, 390-391, 2010.

32. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Collocated microstrip antennas for MIMO systems with a low mutual coupling using mode confinement," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 589-592, 2010.

33. Ferrer, P. J., J. M. Gonzalez-Arbesu, and J. Romeu, "Decorrelation of two closely spaced antennas with a metamaterial AMC surface," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1414-1417, 2008.

34. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, 2010.

35. Hsu, C.-C. and K.-H. Lin H.-L. Su, "Implementation of broadband isolator using metamaterialinspired resonators and a T-shaped branch for MIMO antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3936-3939, 2011.

36. Sharawi, M. S., A. B. Numan, and D. N. Aloi, "Isolation improvement in a dual-band dual-element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2013.

37. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1298-1324, 2005.

38. Mavridis, G. A., D. E. Anagnostou, and M. T. Chryssomallis, "Evaluation of the quality factor, Q, of electrically small microstrip-patch antennas," IEEE Antennas Propag. Mag., Vol. 53, No. 4, 216-224, 2011.

39. Yaghjian, A. D., M. Gustafsson, and B. L. G. Jonsson, "Minimum Q for lossy and lossless electrically small dipole antennas," Progress In Electromagnetics Research, Vol. 143, 641-673, 2013.

40. Hrabar, S., Z. Eres, and J. Bartolic, "Capacitively loaded loop as basic element of negative permeability meta-material," Proc. Eur. Microw. Conf., 357-361, Milan, Italy, 2002.

41. Erentok, A., P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 160-172, 2005.

42. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1462-1468, 2005.

43. Thaysen, J. and K. B. Jakobsen, "Envelope correlation in (N,N) MIMO antenna array from scattering parameters," Microw. Opt. Technol. Lett., Vol. 48, No. 5, 832-834, 2006.

44. Karatzidis, D. I., T. V. Yioultsis, and E. E. Kriezis, "Fast analysis of photonic crystal structures with mixed-order prism macroelements," J. Lightw. Technol., Vol. 26, No. 13, 2002-2009, 2008.

45. Aydin, K. and E. Ozbay, "Identifying magnetic response of split-ring resonators at microwave frequencies," Opto-Electon. Rev., Vol. 14, No. 3, 193-199, 2006.

46. Wheeler, H. A., "Fundamental Limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, 1947.

47. Ziolkowski, R.W. and A. Erentok, "At and below the chu limit: Passive and active broad bandwidth metamaterial-based electrically small antennas," IET Microw. Antennas Propag., Vol. 1, No. 1, 116-128, 2007.

48. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, 1996.

© Copyright 2010 EMW Publishing. All Rights Reserved