PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 60 > pp. 287-300

A RECURSIVE APPROACH TO IMPROVE THE IMAGE QUALITY IN WELL-LOGGING ENVIRONMENTS

By Y.-H. Kuo and J.-F. Kiang

Full Article PDF (2,121 KB)

Abstract:
A three-stage recursive approach is proposed to improve the recovered distribution of electric parameters in a well-logging environment. The first stage is executed using the conventional linear sampling method (LSM) and the contrast source inversion (CSI) method. In the second stage, the background distribution is updated to better identify the target shape, using the recovered results in the first stage. In the third stage, the background distribution is made closer to the results in stage two, which improves the recovered distribution near the target boundary. The effect of noise is also simulated.

Citation:
Y.-H. Kuo and J.-F. Kiang, "A Recursive Approach to Improve the Image Quality in Well-Logging Environments," Progress In Electromagnetics Research B, Vol. 60, 287-300, 2014.
doi:10.2528/PIERB14061302

References:
1. L., Crocco, I. Catapano, L. D. Donato, and T. Isernia, "The linear sampling method as a way to quantitative inverse scattering," IEEE Trans. Antennas Propagat., Vol. 60, No. 4, 1844-1853, April 2012.

2. Catapano, I., L. Crocco, and T. Isernia, "Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3265-3273, October 2008.
doi:10.1109/TGRS.2008.921745

3. Constable, S. C., R. L. Parker, and C. G. Constable, "The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, Vol. 19, No. 6, S105-137, 2003.
doi:10.1088/0266-5611/19/6/057

4. Gilmore, C., A. Abubakar, W. Hu, T. M. Habashy, and P. M. van den Berg, "Microwave biomedical data inversion using the finite-difference contrast source inversion method," IEEE Trans. Antennas Propagat., Vol. 57, No. 5, 1528-1538, May 2009.
doi:10.1109/TAP.2009.2016728

5. Abubakar, A., W. Hu, P. M. van den Berg, and T. M. Habashy, "A finite-difference contrast source inversion method," Inverse Problems, Vol. 24, 065004, 2008.
doi:10.1088/0266-5611/24/6/065004

6. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013

7. Abubaker, A., P. M. van den Berh, and J. J. Mallorqui, "Imaging of biomedical data using a multiplicative regularized contrast source inversion method," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 1761-1771, July 2002.
doi:10.1109/TMTT.2002.800427

8. Gilmore, C., P. Mojabi, and J. LoVetri, "Comparison of an enhanced distorted Born iterative method and the multiplicative-regularized contrast source inversion method," IEEE Trans. Antennas Propagat., Vol. 57, No. 8, 2341-2350, August 2009.
doi:10.1109/TAP.2009.2024478

9. Binley, A. and A. Kemna, "DC resistivity and induced polarization methods," Hydrogeophy., Vol. 50, 129-156, 2005.
doi:10.1007/1-4020-3102-5_5

10. Ernst, J. R., H. Maurer, A. G. Green, and K. Holloger, "Full-waveform inversion of crosshole radar data based on 2-D finite-difference time-domain solution of Maxwell’s equations," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 9, 2807-2826, September 2007.
doi:10.1109/TGRS.2007.901048

11. Pralat, A. and R. Zdunek, "Electromagnetic geotomography-selection of measuring frequency," IEEE Sens. J., Vol. 5, No. 2, 242-250, April 2005.
doi:10.1109/JSEN.2005.843897

12. Spies, B. R., "Electrical and electromagnetic borehole measurement: A review," Survey Geophys., Vol. 17, 517-556, 1996.
doi:10.1007/BF01901643

13. Zhou, H., M. Sato, T. Takenaka, and G. Li, "Reconstruction from antenna-transformed radar data using a time-domain reconstruction method," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 9, 689-696, March 2007.
doi:10.1109/TGRS.2006.888140

14. Meles, G. A., J. V. der Kruk, S. A. Greenhalgh, J. R. Ernst, H. Murer, and A. G. Green, "A new vector waveform inversion algorithm for simultaneous updating of conductivity and permittivity parameters from combination crosshole/borehole-to-surface GPR data," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 9, 3391-3407, September 2010.
doi:10.1109/TGRS.2010.2046670

15. Jesch, R. L. and R. H. McLaughlin, "Dielectric measurements of oil shale as functions of temperature and frequency," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 12, 2713-2721, December 2001.
doi:10.1109/36.975005

16. Schon, J. H., Physical Properties of Rocks, Elsevier, 2011.

17. Dyni, J. R., "Geology and resources of some world oil-shale deposits," U.S. Geolog. Survey Sci. Investig. Rep., 2006.


© Copyright 2010 EMW Publishing. All Rights Reserved