Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 60 > pp. 301-315


By Y.-H. Chou and J.-F. Kiang

Full Article PDF (2,099 KB)

The split-step Fourier (SSF) algorithm is applied to simulate the propagation of radio waves in an atmospheric duct. The refractive-index fluctuation in the ducts is assumed to follow a two-dimensional Kolmogorov power spectrum, which is derived from its three-dimensional counterpart via the Wiener-Khinchin theorem. The measured profiles of temperature, humidity and wind speed in the Gulf area on April 28, 1996, are used to derive the average refractive index and the scaling parameters in order to estimate the outer scale and the structure constant of turbulence in the atmospheric boundary layer (ABL). Simulation results show significant turbulence effects above sea in daytime, under stable conditions, which are attributed to the presence of atmospheric ducts. Weak turbulence effects are observed over lands in daytime, under unstable conditions, in which the high surface temperature prevents the formation of ducts.

Y.-H. Chou and J.-F. Kiang, "Ducting and Turbulence Effects on Radio-Wave Propagation in an Atmospheric Boundary Layer," Progress In Electromagnetics Research B, Vol. 60, 301-315, 2014.

1. Mentes, S. S. and Z. Kaymaz, "Investigation of surface duct conditions over Istanbul, Turkey," J. Appl. Meteorol. Climatol., Vol. 46, No. 3, 318-–337, 2007.

2. Skolnik, M. I., Introduction to Radar Systems, 3rd Edition, McGraw-Hill, 2001.

3. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave remote sensing fundamentals and radiometry," Microwave Remote Sensing: Active and Passive, Vol. 1, Addison-Wesley, 1981.

4. Kerans, A., A. S. Kulessa, E. Lensson, G. French, and G. S.Woods, "Implications of the evaporation duct for microwave radio path design over tropical oceans in Northern Australia," Workshop Appl. Radio Sci., Leura, Australia, 2002.

5. Sirkova, I. and M. Mikhalev, "Parabolic-equation-based study of ducting effects on microwave propagation," Microwave Opt. Technol. Lett., Vol. 42, No. 5, 390-394, 2004.

6. Sirkova, I. and M. Mikhalev, "Influence of tropospheric duct parameters changes on microwave path loss," Proc. Int. Sci. Conf. Info. Commun. Energy Syst. Technol., 43-46, Sofia, Bulgaria, 2003.

7. Kuttler, J. R. and G. D. Dockery, "Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere," Radio Sci., Vol. 26, No. 2, 381-393, 1991.

8. Douchin, N., S. Bolioli, F. Christophe, and P. Combes, "Theoretical study of the evaporation duct effects on satellite-to-ship radio links near the horizon," IEE Proc. Microwaves Antennas Propagat., Vol. 141, No. 4, 272-–278, 1994.

9. Apaydin, G. and L. Sevgi, "FEM-based surface wave multimixed-path propagator and path loss predictions," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 1010-1013, 2009.

10. Essen, H. and H. H. Fuchs, "Microwave and millimeterwave propagation within the marine boundary layer," German Microwave Conf., Karlsruhe, Germany, 2006.

11. Degrazia, G. A., D. Anfossi, J. C. Carvalho, C. Mangia, T. Tirabassi, and H. F. C. Velho, "Turbulence parameterisation for PBL dispersion models in all stability conditions," Atmos. Environ., Vol. 34, No. 21, 3575-3583, 2000.

12. Kukushkin, A. and J.Wiley, Radio Wave Propagation in the Marine Boundary Layer, Wiley Online Library, 2004.

13. Rouseff, D., "Simulated microwave propagation through tropospheric turbulence," IEEE Trans. Antennas Propagat., Vol. 40, No. 9, 1076-1083, 1992.

14. Hitney, H. V., "A practical tropospheric scatter model using the parabolic equation," IEEE Trans. Antennas Propagat., Vol. 41, No. 7, 905-909, 1993.

15. Hitney, H. V., "Evaporation duct propagation and near-grazing angle scattering from a rough sea," IEEE Int. Geosci. Remote Sensing Symp., 2631-2633, 1999.

16. Bein, G., "Monte Carlo computer technique for one-dimensional random media," IEEE Trans. Antennas Propagat., Vol. 21, No. 1, 83-88, 1973.

17. Adams, R. N. and E. D. Denman, Wave Propagation and Turbulent Media, Elsevier, 1966.

18. Holtslag, A. A. M. and F. T. M. Nieuwstadt, "Scaling the atmospheric boundary layer," Boundary Layer Meteorol., Vol. 36, No. 1, 201-209, 1986.

19. Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, "Turbulence structure in the convective boundary layer," J. Atmos. Sci., Vol. 33, No. 11, 2152-2169, 1976.

20. Moeng, C.-H., "A large-eddy-simulation model for the study of planetary boundary-layer turbulence," J. Atmos. Sci., Vol. 41, No. 13, 2052-2062, 1984.

21. Nieuwstadt, F. T. M., "The turbulent structure of the stable, nocturnal boundary layer," J. Atmos. Sci., Vol. 41, No. 14, 2202-2216, 1984.

22. Levy, M., Parabolic Equation Methods for Electromagnetic Wave Propagation, Inst. Electr. Eng., 2000.

23. Frehlich, R., "Simulation of laser propagation in a turbulent atmosphere," Appl. Opt., Vol. 39, 393-397, January 2000.

24. Wiener, N., "Generalized harmonic analysis," Acta Mathematica, Vol. 55, No. 1, 117-258, 1930.

25. Ishimaru, A., "Wave Propagation and Scattering in Random Media," IEEE Press, 1997.

26. Fabbro, V. and L. Feral, "Comparison of 2D and 3D electromagnetic approaches to predict tropospheric turbulence effects in clear sky conditions," IEEE Trans. Antennas Propagat., Vol. 60, No. 9, 4398-4407, 2012.

27. Smith, E. K. and S. Weintraub, "The constants in the equation for atmospheric refractive index at radio frequencies," Proc. IRE, Vol. 41, 1035-1037, 1953.

28. Bean, B. R. and E. Dutton, Radio Meteorology, Dover Publications, 1968.

29. Berberan-Santos, M. N., E. N. Bodunov, and L. Pogliani, "On the barometric formula," Am. J. Phys., Vol. 65, 404, 1997.

30. Wallace, J. M. and P. V. Hobbs, "Atmospheric Science: An Introductory Survey," Academic Press, 2006.

31. Arya, P. S., Introduction to Micrometeorology, 2nd Edition, Academic press, 2001.

32. Yamartino, R. J., J. S. Scire, G. R. Carmichael, and Y. S. Chang, "The CALGRID mesoscale photochemical grid model. I. Model formulation," Atmos. Environ. Part A, Vol. 26, No. 8, 1493-1512, 1992.

33. De Bruin, H. A. R., R. J. Ronda, and B. J. H. Van De Wiel, "Approximate solutions for the Obukhov length and the surface fluxes in terms of bulk Richardson numbers," Boundary Layer Meteorol., Vol. 95, No. 1, 145-157, 2000.

34. Panovsky, H. A. and J. A. Dutton, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley, 1984.

35. Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, "Review and intercomparison of operational methods for the determination of the mixing height," Atmos. Environ., Vol. 34, No. 7, 1001-1027, 2000.

36. Gryning, S.-E. and E. Batchvarova, "Parameterization of the depth of the entrainment zone above the daytime mixed layer," Quart. J. Royal Meteorol. Soc., Vol. 120, No. 515, 47-58, 1994.

37. Sun, J., W. Jiang, Z. Chen, and R. Yuan, "Parameterization for the depth of the entrainment zone above the convectively mixed layer," Adv. Atmos. Sci., Vol. 22, No. 1, 114-121, 2005.

38. Cox, D. C., H. W. Arnold, and H. H. Hoffman, "Observations of cloud-produced amplitude scintillation on 19- and 28-GHz Earth-space paths," Radio Sci., Vol. 16, No. 5, 885-907, 1981.

39. Tunick, A., "Optical turbulence effects on ground to satellite microwave refractivity,", DTIC Document ADA449682, 2006.

40. Andreas, E .L., "On the Kolmogorov constants for the temperature-humidity cospectrum and the refractive index spectrum," J. Atmos. Sci., Vol. 44, No. 17, 2399-2406, 1987.

41. Tatarskii, V. I., The Effects of the Turbulent Atmosphere on Wave Propagation, Israel Program for Scientific Translations, 1971.

42. Burk, S. D., "Refractive index structure parameters-time-dependent calculations using a numerical boundary-layer model," J. Appl. Meteorol., Vol. 19, 562-576, 1980.

43. Gryning, S. E., E. Batchvarova, B. Brummer, H. Jørgensen, and S. Larsen, "On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer," Boundary Layer Meteorol., Vol. 124, No. 2, 251-268, 2007.

44. Brooks, I. M., A. K. Goroch, and D. P. Rogers, "Observations of strong surface radar ducts over the Persian Gulf," J. Appl. Meteorol., Vol. 38, No. 9, 1293-1310, 1999.

45. Atkinson, B. W. and M. Zhu, "Radar-duct and boundary-layer characteristics over the area of the Gulf," Q. J. R. Meteorol. Soc., Vol. 131, No. 609, 1923-1953, 2005.

46. Rao, P. G., H. R. Hatwar, M. H. Al-Sulaiti, and A. H. Al-Mulla, "Summer shamals over the Arabian Gulf," Weather, Vol. 58, No. 12, 471-478, 2003.

47. Garratt, J. R. and B. F. Ryan, "The structure of the stably stratified internal boundary layer in offshore flow over the sea," Boundary-Layer Meteorol., Vol. 47, No. 1, 17-40, 1989.

48. Plant, R .S. and B. W. Atkinson, "Sea-breeze modification of the growth of a marine internal boundary layer," Boundary Layer Meteorol., Vol. 104, No. 2, 201-228, 2002.

49. Zhu, M. and B.W. Atkinson, "Observed and modelled climatology of the land-sea breeze circulation over the Persian Gulf," Int. J. Climatol., Vol. 24, No. 7, 883-905, 2004.

50. Ludi, A. and A. Magun, "Near-horizontal line-of-sight millimeter-wave propagation measurements for the determination of outer length scales and anisotropy of turbulent refractive index fluctuations in the lower troposphere," Radio Sci., Vol. 37, No. 2, 12-1-19, 2002.

© Copyright 2010 EMW Publishing. All Rights Reserved