PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 61 > pp. 55-67

FINITE-DIFFERENCE FREQUENCY-DOMAIN ALGORITHM FOR MODELING ELECTROMAGNETIC SCATTERING FROM GENERAL ANISOTROPIC OBJECTS

By R. C. Rumpf, C. R. Garcia, E. A. Berry, and J. H. Barton

Full Article PDF (551 KB)

Abstract:
The finite-difference frequency-domain (FDFD) method is a very simple and powerful approach for rigorous analysis of electromagnetic structures. It may be the simplest of all methods to implement and is excellent for field visualization and for developing new ways to model devices. This paper describes a simple method for incorporating anisotropic materials with arbitrary tensors for both permittivity and permeability into the FDFD method. The algorithm is benchmarked by comparing transmission and reflection results for an anisotropic guided-mode resonant filter simulated in HFSS and FDFD. The anisotropic FDFD method is then applied to a lens and cloak designed by transformation optics.

Citation:
R. C. Rumpf, C. R. Garcia, E. A. Berry, and J. H. Barton, "Finite-difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects," Progress In Electromagnetics Research B, Vol. 61, 55-67, 2014.
doi:10.2528/PIERB14071606
http://www.jpier.org/pierb/pier.php?paper=14071606

References:
1. Luo, G. Q., et al., "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 53, 4035-4043, 2005.
doi:10.1109/TAP.2005.860010

2. Rumpf, R. C., "Design and optimization of nano-optical elements by coupling fabrication to optical behavior,", University of Central Florida Orlando, Florida, 2006.

3. Sun, W., K. Liu, and C. A. Balanis, "Analysis of singly and doubly periodic absorbers by frequency-domain finite-difference method," IEEE Transactions on Antennas and Propagation, Vol. 44, 798-805, 1996.
doi:10.1109/8.509883

4. Wu, S.-D. and E. N. Glytsis, "Volume holographic grating couplers: Rigorous analysis by use of the finite-difference frequency-domain method," Applied Optics, Vol. 43, 1009-1023, 2004.
doi:10.1364/AO.43.001009

5. Shin, W. and S. Fan, "Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell's equations solvers," Journal of Computational Physics, Vol. 231, 3406-3431, 2012.
doi:10.1016/j.jcp.2012.01.013

6. Shin, W. and S. Fan, "Accelerated solution of the frequency-domain Maxwell's equations by engineering the eigenvalue distribution of the operator," Optics Express, Vol. 21, 22578-22595, 2013.
doi:10.1364/OE.21.022578

7. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006

8. Takayama, O., L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, "Dyakonov surface waves: A review," Electromagnetics, Vol. 28, 126-145, 2008.
doi:10.1080/02726340801921403

9. Figotin, A. and I. Vitebskiy, "Slow-wave resonance in periodic stacks of anisotropic layers," Physical Review A, Vol. 76, 053839, 2007.
doi:10.1103/PhysRevA.76.053839

10. Schurig, D., et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

11. Kwon, D.-H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Optics Express, Vol. 16, 18731-18738, 2008.
doi:10.1364/OE.16.018731

12. Al-Barqawi, H., N. Dib, and M. Khodier, "A two-dimensional full-wave finite-difference frequency-domain analysis of ferrite loaded structures," International Journal of Infrared and Millimeter Waves, Vol. 29, 443-456, 2008.
doi:10.1007/s10762-008-9349-6

13. Loke, V. L., T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "FDFD/T-matrix hybrid method," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 106, 274-284, 2007.
doi:10.1016/j.jqsrt.2007.01.040

14. Mielewski, J., A. Cwikla, and M. Mrozowski, "Analysis of shielded anisotropic dielectric resonators using FDFD and the Arnoldi method," 12th International Conference on Microwaves and Radar MIKON'98, 335-339, 1998.
doi:10.1109/MIKON.1998.740799

15. Pinheiro, H. F., A. J. Giarola, and C. L. D. S. S. Sobrinho, "Dispersion characteristics of asymmetric coupled anisotropic dielectric waveguides using FDFD," International Journal of Infrared and Millimeter Waves, Vol. 16, 1965-1975, 1995.
doi:10.1007/BF02072551

16. Rappaport, C. M. and B. J. McCartin, "FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes," IEEE Transactions on Antennas and Propagation, Vol. 39, 345-349, 1991.
doi:10.1109/8.76332

17. Rappaport, C. M. and E. Smith, "Anisotropic FDFD computed on conformal meshes," IEEE Transactions on Magnetics, Vol. 27, 3848-3851, 1991.
doi:10.1109/20.104941

18. Zhao, Y.-J., K.-L. Wu, and K.-K. Cheng, "A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1844-1848, 2002.
doi:10.1109/TMTT.2002.800447

19. Chen, M.-Y., S.-M. Hsu, and H.-C. Chang, "A finite-difference frequency-domain method for full-vectroial mode solutions of anisotropic optical waveguides with arbitrary permittivity tensor," Optics Express, Vol. 17, 5965-5979, 2009.
doi:10.1364/OE.17.005965

20. Lavranos, C., G. Kyriacou, and J. Sahalos, "A 2-D finite difference frequency domain (FDFD) eigenvalue method for orthogonal curvilinear coordinates," PIERS Proceedings, 397-400, PISA, Italy, Mar. 28-31, 2004.

21. Pereda, J. A., A. Vegas, and A. Prieto, "An improved compact 2D full-wave FDFD method for general guided wave structures," Microwave and Optical Technology Letters, Vol. 38, 331-335, 2003.
doi:10.1002/mop.11052

22. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

23. Taflove, A. and S. C. Hagness, Computational Electrodynamics, Vol. 160, Artech House Boston, 2000.

24. Umashankar, K. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Transactions on Electromagnetic Compatibility, 397-405, 1982.
doi:10.1109/TEMC.1982.304054

25. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

26. Margengo, E., C. M. Rappaport, and E. L. Miller, "Optimum PML ABC conductivity profile in FDFD," IEEE Transactions on Magnetics, Vol. 35, 1506-1509, 1999.
doi:10.1109/20.767253

27. Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, 1460-1463, 1995.
doi:10.1109/8.477075

28. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

29. Jordán, K., Calculus of Finite Differences, American Mathematical Soc., 1965.

30. Rumpf, R. C., C. R. Garcia, H. H. Tsang, J. E. Padilla, and M. D. Irwin, "Electromagnetic isolation of a microstrip by embedding in a spatially variant anisotropic metamaterial," Progress In Electromagnetics Research, Vol. 142, 243-260, 2013.
doi:10.2528/PIER13070308

31. Horn, A., "Doubly stochastic matrices and the diagonal of a rotation matrix," Amer. J. Math, Vol. 76, 620-630, 1954.
doi:10.2307/2372705

32. Magnusson, R. and S. Wang, "New principle for optical filters," Applied Physics Letters, Vol. 61, 1022-1024, 1992.
doi:10.1063/1.107703

33. Barton, J. H., R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, "All-dielectric frequency selective surfaces with few number of periods," Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012.
doi:10.2528/PIERB12042404

34. Boonruang, S., A. Greenwell, and M. Moharam, "Multiline two-dimensional guided-mode resonant filters," Applied Optics, Vol. 45, 5740-5747, 2006.
doi:10.1364/AO.45.005740

35. Pung, A. J., S. R. Carl, I. R. Srimathi, and E. G. Johnson, "Method of fabrication for encapsulated polarizing resonant gratings," IEEE Photonics Technology Letters, Vol. 25, 1432-1434, 2013.
doi:10.1109/LPT.2013.2266575

36. Tibuleac, S. and R. Magnusson, "Re°ection and transmission guided-mode resonance filters," JOSA A, Vol. 14, 1617-1626, 1997.
doi:10.1364/JOSAA.14.001617

37. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012.
doi:10.2528/PIERL12070311

38. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

39. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

40. Ward, A. and J. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773-793, 1996.
doi:10.1080/09500349608232782

41. Landau, L. D. and E. M. Lifshits, The Classical Theory of Fields, Vol. 2, Butterworth-Heinemann, 1975.

42. Post, E. J., Formal Structure of Electromagnetics: General Covariance and Electromagnetics, Courier Dover Publications, 1997.

43. Kwon, D.-H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends ," New Journal of Physics, Vol. 10, 115023, 2008.
doi:10.1088/1367-2630/10/11/115023

44. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28


© Copyright 2010 EMW Publishing. All Rights Reserved