Vol. 62
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-12-26
An Exactly-Solvable Quasistatic Electricity Inverse Problem: Retrieval of the Complex Permittivity of a Cylinder Taking Account of Nuisance Parameter Uncertainty
By
Progress In Electromagnetics Research B, Vol. 62, 1-16, 2015
Abstract
This study concerns the 2D inverse problem of the retrieval, using external field data, of either one of the two physical parameters, constituted by the real and imaginary parts of the permittivity, of a z-independent cylindrical dielectric specimen subjected to an external, z-independent, quasistatic electric field. Six other parameters enter into the inverse problem. They are termed nuisance parameters because: 1) they are not retrieved during the inversion and 2) uncertainty as to their actual values can adversely affect the accuracy of the retrieval of the permittivity. This inverse problem is shown to have an exact, mathematically-explicit, solution, both for continuous and discrete input data, whose properties, with respect to the various nuisance parameter uncertainties, are analyzed, first in a mathematical, and subsequently in a numerical manner for noiseless data. It is found that: a) optimal inversion requires data registered at only a small number of sensors, b) the inverse solution, satisfying pre-existing physical constraints, exists and is unique. Moreover, the inverse solution is shown to be unstable with respect to three nuisance parameter uncertainties, the consequence of which is large retrieval inaccuracy for small nuisance parameter uncertainties, acting either individually or in combination.
Citation
Armand Wirgin, "An Exactly-Solvable Quasistatic Electricity Inverse Problem: Retrieval of the Complex Permittivity of a Cylinder Taking Account of Nuisance Parameter Uncertainty," Progress In Electromagnetics Research B, Vol. 62, 1-16, 2015.
doi:10.2528/PIERB14111606
References

1. Banks, H. T. and K. Kunisch, Estimation Techniques for Distributed Parameter Systems, Birkhauser, Boston, 1989.
doi:10.1007/978-1-4612-3700-6

2. Bauer, N., K. Fajans, and S. Z. Lewin, "Refractometry," Physical Methods of Organic Chemistry, A. Weissberger (ed.), Interscience, New York, 1960.

3. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

4. Chen, L., Z.-Y. Lei, R. Yang, X.-W. Shi, and J. Zhang, "Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures," Progress In Electromagnetics Research M, Vol. 29, 79-93, 2013.
doi:10.2528/PIERM13010204

5. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

6. Chylek, P., V. Ramaswamy, A. Ashkin, and J. M. Dziedzic, "Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data," Appl. Opt., Vol. 22, 2302-2307, 1983.
doi:10.1364/AO.22.002302

7. Emery, A. F., "The effect of correlations and uncertain parameters on the efficiency of estimating and the precision of estimated parameters," Inverse Engineering Handbook, K. A. Woodbury (ed.), CRC Press, Boca Raton, 2003.

8. Hadamard, J. S., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Oxford University Press, Oxford, 1923.

9. Hasar, U. C., J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, "Differential uncertainty analysis for evaluating the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs," Opt. Express, Vol. 20, 29002-29022, 2012.
doi:10.1364/OE.20.029002

10. Hasar, U. C., J. J. Barroso, M. Ertugrul, C. Sabah, and B. Cavusoglu, "Application of a useful uncertainty analysis as a metric tool for assessing the performance of electromagnetic properties retrieval methods of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 128, 365-380, 2014.
doi:10.2528/PIER12040802

11. Lefeuve-Mesgouez, G., A. Mesgouez, E. Ogam, T. Scotti, and A. Wirgin, "Retrieval of the physical properties of an anelastic solid half space from seismic data," J. Appl. Geophys., Vol. 88, 70-82, 2013.
doi:10.1016/j.jappgeo.2012.09.010

12. Morse, P. M. and H. Feshbach, Methods of Theoretical Phyics, Mc Graw-Hill, New York, 1953.

13. Neittaanmaki, P., M. Rudnicki, and A. Savini, Inverse Problems and Optimal Design in Electricity and Magnetism, Clarendon Press, Oxford, 1996.

14. Pluchino, A. B., S. S. Goldberg, J. N. Dowling, and C. M. Randall, "Refractive-index measurements of single micron-sized carbon particles," Appl. Opt., Vol. 19, 3370-3372, 1980.
doi:10.1364/AO.19.003370

15. Sambuelli, L., "Uncertainty propagation using some common mixing rules for the modelling and interpretation of electromagnetic data," Near Surf. Geophys., Vol. 7, 285-296, 2009.

16. Scotti, T. and A. Wirgin, "Multiparameter identification of a lossy fluid-like object from its transient acoustic response," Inverse Prob. Sci. Engrg., Vol. 22, 1228-1258, 2014.
doi:10.1080/17415977.2013.867485

17. Seitz, F., The Modern Theory of Solids, Dover, New York, 1987.

18. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

19. Von Hippel, A. R., Dielectrics and Waves, Chapman & Hall, London, 1954.

20. Vuye, G. and T. Lopez-Rios, "Precision in the ellipsometric determination of the optical constants of very thin films," Appl. Opt., Vol. 21, 2968-2971, 1982.
doi:10.1364/AO.21.002968

21. Yilmaz, T., R. Foster, and Y. Hao, "Detecting vital signs with wearable wireless sensors," Sensors, Vol. 10, 10837-10862, 2010.
doi:10.3390/s101210837

22. Young, K. F. and H. P. R. Frederikse, "Compilation of the static dielectric constant of inorganic solids," J. Chem. Phys. Ref. Dat, Vol. 2, 313-408, 1973.
doi:10.1063/1.3253121