Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 62 > pp. 49-61


By L.-C. Brahim, K. Boughrara, and R. Ibtiouen

Full Article PDF (656 KB)

This paper deals with the magnet pole shape design for the minimization of cogging torque in permanent magnet synchronous machines (PMSM). New shapes of permanent magnet are proposed. The magnet shape is modeled analytically by a set of stacked and well dimensioned layers relatively to the height and opening angle. The final shape of magnet is configured by using three models in view of obtaining lower magnitude of cogging torque. A 2-D exact analytical solution of magnetic field distribution taking into account the shape of magnet, the irregular mechanical thickness of air-gap and semi-closed stator slots is established. The influence of motor's parameters such as the number of stator slots per pole and per phase and PM's magnetization on cogging torque is discussed. Analytical results are validated by the static finite-element method (FEM).

L.-C. Brahim, K. Boughrara, and R. Ibtiouen, "Cogging Torque Minimization of Surface-Mounted Permanent Magnet Synchronous Machines Using Hybrid Magnet Shapes," Progress In Electromagnetics Research B, Vol. 62, 49-61, 2015.

1. Boughrara, K., B. Ladghem Chikouche, R. Ibtiouen, D. Zarko, and O. Touhami, "Analytical analysis of slotted air-gap surface mounted permanent-magnet synchronous motor with magnet bars magnetized in shifting direction," IEEE Trans. Magn., Vol. 45, No. 2, 747-758, Feb. 2009.

2. Laskaris, K. I. and A. G. Kladas, "Permanent-magnet shape optimization effects on synchronous motor performance," IEEE Trans. Ind. Elect., Vol. 58, No. 9, 3776-3783, Sep. 2011.

3. Ashabani, M., Y. Abdel-Rady, and I. Mohamed, "Multiobjective shape optimization of segmented pole permanent-magnet synchronous machines with improved torque characteristic," IEEE Trans. Magn., Vol. 47, No. 4, 795-804, Apr. 2011.

4. Pang, Y., Z. Q. Zhu, and Z. J. Feng, "Cogging torque in cost-effective surface-mounted permanentmagnet machines," IEEE Trans. Magn., Vol. 47, No. 9, 2269-2276, Sep. 2011.

5. Islam, R., I. Husain, A. Fardoun, and K. McLaughlin, "Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction," IEEE Trans. Ind. Appl., Vol. 45, No. 1, 152-160, Jan./Feb. 2009.

6. Shin, P. S., S. H. Woo, and C. S. Koh, "An optimal design of large scale permanent magnet pole shape using adaptive response surface method with latin hypercube sampling strategy," IEEE Trans. Magn., Vol. 45, No. 3, 1214-1217, Mar. 2009.

7. Chabchoub, M., I. B. Salah, G. Krebs, R. Neji, and C. Marchand, "PMSMcogging torque reduction: Comparison between different shapes of magnet," First International Conference of Renewable Energies and Vehicular Technology, 206-211, 2012.

8. Oh, S., S. Min, and J. Hong, "Air gap flux density waveform design of surface-mounted permanent magnet motor considering magnet shape and magnetization direction," IEEE Trans. Magn., Vol. 49, No. 5, 2393-2396, May 2013.

9. Guemes, J. A., A. M. Iraolagoitia, J. I. Del Hoyo, and P. Fernandez, "Torque analysis in permanent-magnet synchronous motors: A comparative study," IEEE Trans. Energy Convers., Vol. 26, No. 1, 55-63, Mar. 2011.

10. Sung, S. J., S. J. Park, and G. H. Jang, "Cogging torque of brushless DC motors due to the interaction between the uneven magnetization of a permanent magnet and teeth curvature," IEEE Trans. Magn., Vol. 47, No. 7, 1923-1928, Jul. 2011.

11. Tudorache, T. and I. Trifu, "Permanent-magnet synchronous machine cogging torque reduction using a hybrid model," IEEE Trans. Magn., Vol. 48, No. 10, 2627-2632, Oct. 2012.

12. Jiang, X., J. Xing, Y. Li, and Y. Lu, "Theoretical and simulation analysis of influences of stator tooth width on cogging torque of BLDC motors," IEEE Trans. Magn., Vol. 45, No. 10, 4601-4604, Oct. 2009.

13. Boughrara, K., T. Lubin, R. Ibtiouen, and M. N. Benallal, "Analytical calculation of parallel double excitation and spoke-type permanent magnet motors; simplified versus exact model," Progress In Electromagnetics Research B, Vol. 47, 145-178, 2013.

14. Lubin, T., S. Mezani, and A. Rezzoug, "Improved analytical model for surface mounted PM motors considering slotting effects and armature reaction," Progress In Electromagnetics Research B, Vol. 25, 293-314, 2010.

15. Dubas, F. and C. Espanet, "Analytical solution of the magnetic field in permanent-magnet motors taking into account slotting effect: No-load vector potential and flux density calculation," IEEE Trans. Magn., Vol. 45, No. 5, 2097-2109, May 2009.

16. Wu, L. J., Z. Q. Zhu, D. A. Staton, M. Popescud, and D. Hawkins, "Comparison of analytical models of cogging torque in surface-mounted PM machines," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2414-2425, Jun. 2012.

17. Zarko, D., D. Ban, and T. A. Lipo, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance," IEEE Trans. Magn., Vol. 42, No. 7, 1828-1837, Jul. 2006.

18. Tavana, N. R. and A. Shoulaie, "Analysis and design of magnetic pole shape in linear permanent-magnet machine," IEEE Trans. Magn., Vol. 46, No. 4, 1000-1006, Apr. 2010.

19. Jeffrey, A., Advanced Engineering Mathematics, University of Newcastle-upon-Tyne, Harcourt/Academic Press, 2002.

20. Meeker, D. C., , Finite Element Method Magnetics, Version 4.2, Apr. 2009 Build, http://www.femm.info.

21. Li, Y., J. Xing, T.Wang, and Y. Lu, "Programmable design of magnet shape for permanent-magnet synchronous motors with sinusoidal back EMF waveforms," IEEE Trans. Magn., Vol. 44, No. 9, 2163-2167, Sep. 2008.

22. Shah, S. Q. A., T. A. Lipo, and B.-I. Kwon, "Modeling of novel permanent magnet pole shape SPM motor for reducing torque pulsation," IEEE Trans. Magn., Vol. 48, No. 11, 4626-4629, Nov. 2012.

23. Jang, S.-M., H.-I. Park, J.-Y. Choi, K.-J. Ko, and S.-H. Lee, "Magnet pole shape design of permanent magnet machine for minimization of torque ripple based on electromagnetic field theory," IEEE Trans. Magn., Vol. 47, No. 10, 3586-3589, Oct. 2011.

24. Chaithongsuk, S., B. Nahid-Mobarakeh, N. Takorabet, J. P. Caron, and F. Meibody-Tabar, "Optimal design of PM motors to achieve efficient flux weakening strategy in variable speed control applications," XIX International Conference on Electrical Machines — ICEM, 1-6, Rome, 2010.

25. Chu, W. Q. and Z. Q. Zhu, "Investigation of torque ripples in permanent magnet synchronous machines with skewing," IEEE Trans. Energy Convers., Vol. 49, No. 3, 1211-1220, Mar. 2013.

26. Shen, Y. and Z. Q. Zhu, "Analysis of electromagnetic performance of Halbach PM brushless machines having mixed grade and unequal height of magnets," IEEE Trans. Energy Convers., Vol. 49, No. 4, 1461-1469, Apr. 2013.

© Copyright 2010 EMW Publishing. All Rights Reserved