Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 62 > pp. 153-165


By G. Shaker, S. Safavi-Naeini, and N. Sangary

Full Article PDF (630 KB)

In this paper, the modal theory of antennas is re-visited, believing that it brings invaluable information towards facilitating the design of multi-feed multi-band antennas. First, some subtle changes are proposed to enhance the applicability of thetheory. Next, using some efficient computational techniques, the proposed formulations are shown to predict, to a very high accuracy, the input impedance of any antenna under study. This greatly simplifies the antenna problem and focuses design efforts on finding the appropriate complex resonance frequency to cover a required band. Finding the appropriate feed location is then a matter of extracting the corresponding impedance map for this antenna through simple field manipulations.

G. Shaker, S. Safavi-Naeini, and N. Sangary, "Modern Antenna Design Using Mode Analysis Techniques," Progress In Electromagnetics Research B, Vol. 62, 153-165, 2015.

1. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, Wiley-Interscience, 2007.

2. Lo, Y. T., D. Solomon, and W. F. Richards, "Theory and experiment on microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 2, 137-145, Mar. 1979.

3. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.

4. Shen, Z. and R. Macphie, "Rigorous evaluation of the input impedance of a sleeve monopole by modal-expansion method," IEEE Transactions on Antennas and Propagation, Vol. 44, 1584-1591, Dec. 1996.

5. Deschamps, A., "Microstrip microwave antennas," US-AF Symposium on Antennas, 1953.

6. Derneryd, G., "A theoretical investigation of the rectangular microstrip antenna element," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 4, 532-535, Jul. 1978.

7. Carver, R., "A modal expansion theory for the microstrip antenna," IEEE Antennas and Propagation Symposium, 101-104, Jun. 1979.

8. Richards, W. F., Y. T. Lo, and D. D. Harrison, "An improved theory of microstrip antennas and applications," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 6, 853-858, Nov. 1979.

9. Carver, K. R., "Practical analytical techniques for the microstrip antenna," Workshop on Printed Circuit Antenna Technology, 1-20, New Mexico State University, Oct. 1979.

10. Hammerstad, E. O., "Equations for microstrip circuit design," European Microwave Conference, 268-272, Sep. 1975.

11. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, Jan. 1981.

12. Schaubert, H., F. G. Farar, A. Sindoris, and S. T. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 118-123, Jan. 1981.

13. Bhartia, P. and I. J. Bahl, "Frequency agile microstrip antennas," Microwave Journal, 67-60, Oct. 1982.

14. Richards, W. F. and Y. T. Lo, "Theoretical and experimental investigation of a microstrip radiator with multiple limped linear loads," Electromagnetics, Vol. 3, No. 3-4, 371-384, Jul.-Dec. 1983.

15. Richards, W. F., "Microstrip antennas," Antenna Handbook: Theory, Applications and Design, Chapter 10, Van Nostrand Reinhold Co., New York, 1988.

16. Schaubert, H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 6, 667-682, Jun. 1989.

17. Pozar, M., "Microstrip antennas," Proceedings of the IEEE, Vol. 80, No. 1, 79-81, Jan. 1992.

18. Pozar, D. M. and D. Schaubert, "Microstrip antennas: The analysis and design of microstrip antennas and arrays,", Institute of Electrical and Electronics Engineers, 1995.

19. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Vol. 1 and 2, Peter Peregrinus, London, UK, 1989.

20. Lee, K. F. and W. Chen, Advances in Microstrip and Printed Antennas, Wiley, 1997.

21. Wong, K. L., Design of Nonplanar Microstrip Antennas and Transmission Lines, Wiley, 1999.

22. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, 2002.

23. Wong, K. L., Planar Antennas for Wireless Communications, Wiley-Interscience, 2003.

24. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw Hill, New York, 1961.

25. Collin, R. E., Field Theory of Guided Waves, McGraw Hill, New York, 1960.

26. Stuart, R., "Eigenmode analysis of small multielement spherical antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2841-2851, Sep. 2008.

27. Stuart, R., "Eigenmode analysis of a two element segmented capped monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2980-2988, Oct. 2009.

28. Ansoft HFSS v11.0, Ansoft, LLC, 2008, , [Online], available: www.ansoft.com/products/hf/hfss/.

29. COMSOL MULTIPHYSICS v3.4, COMSOL Group, 2008, , [Online], available: www.comsol.com.

30. Matlab Antenna Toolbox, Open Source, , [Online], available: http://ece.wpi.edu/mom/.

31. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.

32. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Micro. Opt. Tech. Lett., Vol. 7, 599-604, 1994.

33. Bahl, J. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.

34. James, J. R., P. S. Hall, and C. Wood, "Microstrip antenna,", P. Peregrinus on behalf of the Institution of Electrical Engineers, 1981.

35. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwood, 2001.

36. Hao, X., D. R. Jackson, and J. T. Williams, "Comparison of models for the probe inductance of a parallel-plate waveguide and a microstrip patch," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3229-3235, Oct. 2005.

37. Shaker, G., S. Safavi-Naeini, N. Sangary, and M. Bakr, "A generalized modal analysis method for antenna design," IEEE International Symposium on Antennas and Propagation Techniques, 2009.

38. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.

39. Yang, F. and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1094-1100, Jul. 2001.

40. Shaker, G. and S. Safavi-Naeini, "Highly miniaturized fractal antennas," IEEE Radio and Wireless Symposium, 2007.

41. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 4, 1298-1324, Apr. 2005.

42. Shaker, G., S. Safavi-Naeini, G. Rafi, and N. Sangary, "On the fundamental Q-bandwidth relations for antennas," IEEE Antennas and Propagation Symposium, Jul. 2008.

43. Shaker, G., M. H. Bakr, N. Sangary, and S. Safavi-Naeini, "Accelerated antenna design methodology exploiting parameterized cauchy models," Progress In Electromagnetic Research B, Vol. 18, 279-309, 2009.

44. Murata Manufacturing Co. Ltd., http://www.murata.com, .

45. Bernhard, J. T., Reconfigurable Antennas, Morgan & Claypool Publishers, 2007.

46. Peregrine Semiconductor, [Online], available: http://www.psemi.com/, .

© Copyright 2010 EMW Publishing. All Rights Reserved