Vol. 66

Latest Volume
All Volumes
All Issues

Electromagnetic Field Theory for Invariant Beams Using Scalar Potentials

By Irving Rondon-Ojeda and Francisco Soto-Eguibar
Progress In Electromagnetics Research B, Vol. 66, 49-61, 2016


We present a description of the electromagnetic field for the propagation invariant beams using scalar potentials. Fundamental dynamical quantities are obtained: energy density, Poynting vector and Maxwell stress tensor. As an example, all these quantities are explicitly calculated for the Bessel beams, which are invariant beams with circular cylindrical symmetry.


Irving Rondon-Ojeda and Francisco Soto-Eguibar, "Electromagnetic Field Theory for Invariant Beams Using Scalar Potentials," Progress In Electromagnetics Research B, Vol. 66, 49-61, 2016.


    1. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, No. 4, 651-654, 1987.

    2. Gutierrez-Vega, J. C., M. D. Iturbe-Castillo, and S. Chavez-Cerda, "Alternative formulation for invariant optical fields: Mathieu beams," Opt. Letters, Vol. 25, No. 20, 1493-1495, 2000.

    3. Bandres, M. A., J. C. Gutierrez-Vega, and S. Chavez-Cerda, "Parabolic nondiffracting optical wave fields," Opt. Letters, Vol. 29, No. 1, 44-46, 2004.

    4. Jauregui, R. and S. Hacyan, "Quantum-mechanical properties of Bessel beams," Phys. Rev. A, Vol. 71, No. 033411, 2005.

    5. Rodriguez-Lara, B. M. and R. Jauregui, "Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry," Phys. Rev. A, Vol. 78, No. 033813, 2008.

    6. Rodriguez-Lara, B. M. and R. Jauregui, "Dynamical constants of structured photons with parabolic-cylindrical symmetry," Phys. Rev. A, Vol. 79, No. 055806, 2009.

    7. Rodriguez-Lara, B. M. and R. Jauregui, "Single structured light beam as an atomic cloud splitter," Phys. Rev. A, Vol. 80, No. 011813R, 2009.

    8. Zhang, L. and P. L. Marston, "Optical theorem for acoustic non-diffracting beams and application to radiation force and torque," Biomed. Opt. Express, Vol. 4, No. 9, 1610-1617, 2013.

    9. Wulle, T. and S. Herminghaus, "Nonlinear optics of Bessel beams," Phys. Rev. Lett., Vol. 71, No. 209, 1401-1404, 1993.

    10. Ambrosio, L. A. and H. E. Hernandez-Figueroa, "Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces," Biomed. Opt. Express, Vol. 2, No. 7, 1893-1906, 2011.

    11. Blonskyi, I., V. Kadan, I. Dmitruk, and P. Korenyuk, "Cherenkov phase-matching in Raman-seeded four-wave mixing by a femtosecond Bessel beam," Appl. Phys. B, Vol. 107, 649-652, 2012.

    12. Willner, A. E., et al., "Optical communications using orbital angular momentum beams," Adv. Opt. Photon., Vol. 7, No. 1, 66-106, 2015.

    13. Volke-Sepulveda, K., S. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, "Orbital angular momentum of a high-order Bessel light beam," J. Opt. B: Quantum Semiclass. Opt., Vol. 4, S82-S89, 2002.

    14. Volke-Sepulveda, K. and E. Ley-Koo, "General construction and connections of vector propagation invariant optical ¯elds: TE and TM modes and polarization states," J. Opt. A: Pure Appl. Opt., Vol. 8, No. 10, 867-877, 2006.

    15. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

    16. Jackson, J. D., Classic Electrodynamics, 3rd Ed., Wiley, 1999.

    17. Gri±ths, D. J., Introduction to Electrodynamics, 3rd Ed., Prentice Hall, 1999.

    18. Boyer, C. P., E. G. Kalnins, W. Miller, and Jr., "Symmetry and separation of variables for the Helmholtz and Laplace equations," Nagoya Math. J., Vol. 60, 35-80, 1976.

    19. Bouchal, Z., "Nondiffracting optical beams: Physical properties, experiments, and applications," Czechoslovak Journal of Physics, Vol. 53, 537-578, 2003.

    20. Gutierrez-Vega, J. C., R. Rodriguez-Dagnino, M. Meneses-Nava, and S. Chavez-Cerda, "Mathieu functions, a visual approach," Am. J. Phys., Vol. 71, No. 3, 233-242, 2003.

    21. Lopez-Mariscal, C., M. A. Bandres, J. C. Gutirrez-Vega, and S. Chavez-Cerda, "Observation of parabolic nondiffracting optical fields," J. Opt. Soc. Am., Vol. 13, No. 7, 2364-2369, 2005.

    22. Hernandez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami, Non-di®racting Waves, John Wiley & Sons, 2013.

    23. McGloin, D. and D. K. Dholakia, "Bessel beams: Diffraction in a new light," Contemporary Physics, Vol. 46, No. 1, 15-28, 2005.

    24. Flores-Perez, A., J. Hernandez, R. Jauregui, and K. Volke-Sepulveda, "Experimental generation and analysis of first-order TE and TM Bessel modes in free space," Opt. Letters, Vol. 31, No. 11, 1732-1734, 2006.

    25. Mishra, S., "A vector wave analysis of a Bessel beam," Opt. Comm., Vol. 85, 159-161, 1991.

    26. Bouchal, Z. and Z. M. Olivik, "Non-diffractive vector Bessel beams," J. Modern Opt., Vol. 42, 1555-1566, 1995.

    27. Yu, Y.-Z. and W.-B. Dou, "Vector analyses of nondifracting beams," Progress In Electromagnetics Research Letters, Vol. 5, 57-71, 2008.

    28. Novitsky, A. V. and D. V. Novitsky, "Negative propagation of vector Bessel beams," Opt. Soc. Am. A, Vol. 24, 2844-2849, 2007.

    29. Lin, Y., W. Seka, J. Eberly, H. Huang, and D. Brown, "Experimental investigation of Bessel beam characteristics," Applied Opt., Vol. 11, No. 15, 2708-2713, 1992.

    30. Bajer, J. and R. Horak, "Nondiffractive fields," Phys. Rev. E, Vol. 54, No. 3, 3052-3054, 1996.

    31. Litvin, I. A., "The behavior of the instantaneous Poynting vector of symmetrical laser beams," J. Opt. Soc. Am., Vol. 29, No. 6, 901-907, 2012.

    32. Mokhun, I., A. Arkhelyuk, Y. Galushko, Y. Kharitonovtta, and J. Viktorovskaya, "Experimental analysis of the Poyting vector characteristics," Applied Opt., Vol. 51, No. 10, C158-C162, 2012.

    33. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian lases modes," Phys. Rev. A, Vol. 45, No. 11, 8185-8189, 1992.

    34. Barnett, S. M. and L. Allen, "Orbital angular momentum and nonparaxial light beams," Opt. Comm., Vol. 110, 670-678, 1994.

    35. Barnett, S. M., "Optical angular momentum flux," J. Opt. B: Quantum and Semiclass. Optics, Vol. 4, S7-S16, 2002.

    36. Mitri, F. G., "Counterpropagating nondifracting vortex beams with linear and angular momenta," Phys. Rev. A, Vol. 88, 035804, 2013.

    37. Barton, J. P., D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys., Vol. 66, 4594-4602, 1989.

    38. Marston, P. L., "Scattering of a Bessel beam by sphere," J. Acoust. Soc. Am., Vol. 121, No. 2, 753-758, 2007.

    39. Marston, P. L., "Scattering of a Bessel beam by sphere II: Helicoidal case shell example," J. Acoust. Soc. Am., Vol. 124, No. 5, 2905-2910, 2008.

    40. Belafhal, A., A. Chafiq, and Z. Hricha, "Scattering of Mathieu beams by a rigid sphere," Opt. Comm., Vol. 284, 3030-3035, 2011.

    41. Belafhal, A., L. Ez-Zariy, A. Chafiq, and Z. Hricha, "Analysis of the scattering far field of a nondiffracting parabolic beam by a rigid sphere," Phys. and Chem. News, Vol. 60, 15-21, 2011.

    42. Cui, Z., Y. Han, and L. Han, "Scattering of a zero-order Bessel beam by shaped homogeneous dielectric particles," J. Opt. Soc. Am. A, Vol. 30, No. 10, 1913-1920, 2013.

    43. Brandao, P., "Nonparaxial TE and TM vector beams with well-defined orbital angular momentum," Opt. Letters, Vol. 37, No. 5, 909-911, 2012.