Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 71 > pp. 167-181


By K. Rani and S. C. Sharma

Full Article PDF (1,404 KB)

An ion beam propagating through a magnetized plasma having positive ions K+ (Potassium ions), electrons and negative ions SF6- (Sulphur hexafluoride ions) drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. For two modes, K+ and SF6-, the frequency and the growth rate of the unstable wave increase with the relative density of negative ions. It is observed that the beam has destabilizing effect on the growth rate of KHI in the presence of negative ions. However, at the large concentration of the negative ions beam stabilizes the growth rate of KHI. An increase in mass of negative ions also stabilizes the growth rate of KHI modes. It is also observed that increase in ion beam velocities and densities play a significant role in changing the growth rate of KHI modes. Moreover, the finite geometry effects tend to modify the dispersion properties and growth of KHI modes.

K. Rani and S. C. Sharma, "Theoretical Modelling of Kelvin Helmholtz Instability Driven by an Ion Beam in a Negative Ion Plasma," Progress In Electromagnetics Research B, Vol. 71, 167-181, 2016.

1. D'Angelo, N., "Ultralow frequency fluctuations at the polar cusp boundaries," J. Geophys. Res., Vol. 78, No. 7, 1206-1209, 1973.

2. Pu, Z. Y. and M. G. Kivelson, "Kelvin Helmholtz instability at magnetopause: Energy flux into magnetosphere," J. Geophys. Res., Vol. 88, No. A2, 853-861, 1983.

3. Miura, A., "Kelvin Helmholtz instability for supersonic shear flow at the magnetospheric boundary," Geophys. Res. Lett., Vol. 17, No. 6, 749-752, 1990.

4. Hasegawa, H., M. Fujimoto, T. D. Phan, H. Reme, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. T. Dokoro, "Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices," Nature, Vol. 430, No. 7001, 755-758, 2004.

5. Migliuolo, S., "Velocity shear instabilities in the anisotropic solar wind and the heating of ions perpendicular to the magnetic field," J. Geophys. Res., Vol. 89, No. A1, 27-36, 1984.

6. Ershkovich, A. I., "Kelvin-Helmholtz instability in type-1 comet tails and associated phenomena," Space Sci. Rev., Vol. 25, No. 1, 3-34, 1980.

7. Penz, T., N. V. Erakaev, H. K. Biernet, H. Lammer, U. V. Amerstorfer, H. Gunell, E. Kallio, S. Barabash, S. Orsini, A. Milillo, and W. Baumjohann, "Ion loss Mars caused by Kelvin-Helmholtz instability," Planet. Space Sci., Vol. 52, No. 13, 1157-1167, 2004.

8. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Chap. XI, 481, Clarendon Press, Oxford, 1961.

9. D'Angelo, N., "Kelvin-Helmholtz instability in a fully ionized plasma in a magnetic field," Phys. Fluids , Vol. 8, No. 9, 1748-1750, 1965.

10. D'Angelo, N. and S. V. Goeler, "Investigation of Kelvin Helmholtz instability in a cesium plasma," Phys. Fluids, Vol. 9, No. 2, 309-313, 1966.

11. Smith, C. G. and S. V. Goeler, "The Kelvin-Helmholtz instability in a collisionless plasma model," Phys. Fluids, Vol. 11, No. 12, 2665-2668, 1968.

12. D' Angelo, N. and B. Song, "The Kelvin-Helmholtz instability in dusty plasmas," Planet. Space Sci., Vol. 38, No. 12, 1577-1579, 1990.

13. D'Angelo, N. and B. Song, "Kelvin-Helmholtz instability in a plasma with negative ions," IEEE Trans. Plasma Sci., Vol. 19, No. 1, 42-46, 1991.

14. An, T., R. L. Merlino, and N. D'Angelo, "The effect of negative ions on the Kelvin-Helmholtz instability in a magnetized potassium plasma," Phys. Lett. A, Vol. 14, No. 1-2, 47-52, 1996.

15. Luo, Q. Z., N. D'Angelo, and R. L. Merlino, "The Kelvin-Helmholtz instability in a plasma with negatively charged dust," Phys. Plasmas, Vol. 8, No. 1, 31-35, 2001.

16. Ostrikov, K., "Surface science of plasma exposed surfaces --- A challenge for applied plasma science," Vacuum, Vol. 83, No. 1, 4-10, 2008.

17. Ostrikov, K., S. Kumar, and H. Sugai, "Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions," Phys. Plasmas, Vol. 8, No. 7, 3490-3497, 2001.

18. Ostrikov, K., "Colloquium: Reactive plasmas as a versatile nano fabrication tool," Rev. Mod. Phys., Vol. 77, No. 2, 489-511, 2005.

19. Sharma, S. C. and M. P. Srivastava, "Ion beam driven ion cyclotron waves in a plasma cylinder with negative ions," Phys. Plasmas, Vol. 8, No. 3, 679-686, 2001.

20. Sharma, S. C. and A. Gahlot, "Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions," Phys. Plasmas, Vol. 15, No. 7, 0737051-0737056, 2008.

21. Song, B., N. D'Angelo, and R. L. Merlino, "Ion-acoustic waves in a plasma with negative ions," Phys. Fluids B, Vol. 3, No. 2, 284-287, 1991.

22. An, T., R. L. Merlino, and N. D' Angelo, "Lower hybrid waves in a plasma with negative ions," Phys. Fluids B, Vol. 5, No. 6, 1917-1918, 1993.

23. D'Angelo, N. and R. L. Merlino, "Electrostatic ion-cyclotron waves in a plasma with negative ions," IEEE Trans. Plasma Sci., Vol. 14, No. 3, 285-286, 1986.

24. Rosenberg, M. and R. L. Merlino, "Ion-acoustic instability in a dusty negative ion plasma," Planet. Space Sci., Vol. 55, No. 10, 1464-1469, 2007.

25. Yatsui, K. and Y. Yamamoto, "Heating of plasma ions by a modulated beam," Phys. Letters, Vol. 30A, No. 2, 135-136, 1969.

26. Chang, R. P., "Lower hybrid beam-plasma instability," Phys. Rev. Lett., Vol. 35, No. 5, 285-288, 1975.

27. Prakash, V., S. C. Sharma, Vijayshri, and R. Gupta, "Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma," Phys. Plasmas, Vol. 21, No. 3, 0337011-0337016, 2014.

28. Chow, V. W. and M. Rosenberg, "Electrostatic ion cyclotron instabilities in negative ion plasmas," Plasma Phys., Vol. 3, No. 4, 1202-1211, 1996.

29. Kim, S. H., J. R. Heinrich, and R. L. Merlino, "Electrostatic ion-cyclotron waves in a plasma with heavy negative ions," Planet. Space Sci., Vol. 56, No. 11, 1552-1559, 2008.

30. Tyagi, R. K., R. S. Pandey, and A. Kumar, "Surface coating by velocity shear instability in plasma," Theoretical Foundations of Chem. Engg., Vol. 46, No. 5, 508-514, 2012.

31. Stoffels, E., W. W. Stoffels, and G. M. W. Kroesen, "Plasma chemistry and surface processes of negative ions," Plasma Sources Sci. Technol., Vol. 10, No. 1, 311-317, 2001.

32. Kuznetsova, V. P., S. Yu. Tarasov, and A. I. Dmitriev, "Nanostructuring burnishing and subsurface shear instability," Journ. of Mat. Processing Tech., Vol. 217, No. 1, 327-335, 2015.

33. Rosenberg, M. and P. K. Shukla, "Instability of ion flows in bounded dusty plasma systems," Phys. Plasmas, Vol. 5, No. 10, 3786, 1998.

34. Matsuoka, C., "Kelvin-Helmholtz instability and roll-up," Scholarpedia, Vol. 9, No. 3, 11821, 2014.

35. Moore, T. W., K. Nykyri, and A. P. Dimmock, "Cross-scale energy transport in space plasmas," Nature Physics, 2016, doi:10.1038/nphys3869.

© Copyright 2010 EMW Publishing. All Rights Reserved