PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 21-44

DESIGN AND DEVELOPMENT OF COAX-FED ELECTROMAGNETICALLY COUPLED STACKED RECTANGULAR PATCH ANTENNA FOR BROAD BAND APPLICATION

By M. Biswas and M. Sen

Full Article PDF (894 KB)

Abstract:
In this article, a set of closed-form expressions is proposed to predict the resonant frequency, quality factor, input impedance, bandwidth efficiency, directivity and gain for a coax-fed electromagnetically coupled rectangular patch antenna. The computed results obtained with the present model are compared with the experimental and HFSS simulated results. The present model shows less error against the experimental and simulated results.

Citation:
M. Biswas and M. Sen, "Design and Development of Coax-Fed Electromagnetically Coupled Stacked Rectangular Patch Antenna for Broad Band Application," Progress In Electromagnetics Research B, Vol. 79, 21-44, 2017.
doi:10.2528/PIERB17042102

References:
1. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, London, 2003.

2. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propagat., Vol. 29, 2-23, Jan. 1981.
doi:10.1109/TAP.1981.1142523

3. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Canton, MA, 2001.

4. Waterhouse, R. B., Printed Antennas for Wireless Communications, John Wiley & Sons, England, 2007.
doi:10.1002/9780470512241

5. Jin, Y. and Z. Du, "Broadband dual-polarized F-probe fed stacked patch antenna for base stations," IEEE Antennas Wireless Propagate. Lett., Vol. 14, 1121-1124, 2015.
doi:10.1109/LAWP.2015.2395422

6. Zhu, Q., S. Yang, and Z. Chen, "Modified corner-fed dual-polarised stacked patch antenna for micro-base station applications," Electro. Lett., Vol. 51, 604-606, Apr. 2015.
doi:10.1049/el.2015.0287

7. Ali, M., T. M. Sayem, and V. K. Kunda, "A reconfigurable stacked microstrip patch antenna for satellite and terrestrial links," IEEE Trans. Vehic. Technol., Vol. 56, 426-435, Mar. 2007.
doi:10.1109/TVT.2007.891412

8. Zhou, Y., C.-C. Chen, and J. L. Volakis, "Dual band proximity-fed stacked patch antenna for tri-band GPS applications," IEEE Trans. Antennas Propagat., Vol. 55, 220-223, Jan. 2007.
doi:10.1109/TAP.2006.888476

9. Wang, Z., S. Fang, S. Fu, and S. Lv, "Dual-band probe-fed stacked patch antenna for GNSS applications," IEEE Antennas Wireless Propagate. Lett., Vol. 8, 100-103, 2009.
doi:10.1109/LAWP.2008.2012355

10. Li, D., P. Guo, Q. Dai, and Y. Fu, "Broadband capacitively coupled stacked patch antenna for GNSS applications," IEEE Antennas Wireless Propagate. Lett., Vol. 11, 701-704, 2012.
doi:10.1109/LAWP.2012.2205129

11. Falade, O. P., M. U. Rehman, Y. Gao, X. Chen, and C. G. Parini, "Single feed stacked patch circular polarized antenna for triple band GPS receivers," IEEE Trans. Antennas Propagat., Vol. 60, 4479-4484, Oct. 2012.
doi:10.1109/TAP.2012.2207354

12. Wang, Z., S. Fang, S. Fu, and S. Jia, "Single-fed broadband circularly polarized stacked patch antenna with horizontally meandered strip for universal UHF RFID applications," IEEE Trans. Micro. Theory Tech., Vol. 59, 1066-1073, Apr. 2011.
doi:10.1109/TMTT.2011.2114010

13. Gao, Y., R. Ma, Y. Wang, Q. Zhang, and C. Parini, "Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO," IEEE Trans. Antennas Propagat., Vol. 64, 4544-4549, Oct. 2016.
doi:10.1109/TAP.2016.2593869

14. Hu, J., Z.-C. Hao, and W. Hong, "Design of a wideband quad-polarization reconfigurable patch antenna array using a stacked structure," IEEE Trans. Antennas Propagat., Vol. 65, 3014-3023, Jun. 2017.
doi:10.1109/TAP.2017.2695529

15. Tiwari, H. and M. V. Kartikeyan, "A stacked microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research C, Vol. 14, 185-195, 2010.
doi:10.2528/PIERC10052903

16. Ghorbani, K. and R. B. Waterhouse, "Dual polarized wide-band aperture stacked patch antennas," IEEE Trans. Antennas Propagat., Vol. 52, 2171-2174, Aug. 2004.
doi:10.1109/TAP.2004.832484

17. Anguera, J., C. Puente, and C. Borja, "A procedure to design stacked microstrip patch antennas based on a simple network model," Micro. Opt. Technol. Lett., Vol. 30, 149-151, Aug. 2001.
doi:10.1002/mop.1248

18. Anguera, J., C. Puente, C. Borja, N. Delbene, and J. Soler, "Dual-frequency broad-band stacked microstrip patch antenna," IEEE Antennas Wireless Propagate. Lett., Vol. 2, 36-39, 2003.
doi:10.1109/LAWP.2003.811325

19. Jang, W.-G. and J.-H. Choi, "Design of a wide and multiband aperture-stacked patch antenna with reflector," Micro. Opt. Technol. Lett., Vol. 49, 2822-2824, Nov. 2007.
doi:10.1002/mop.22876

20. Lee, R. Q. and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propagat., Vol. 38, 1298-1302, Aug. 1990.
doi:10.1109/8.56971

21. Hassani, H. R. and D. M. Syahkal, "Study of electromagnetically coupled stacked rectangular patch antennas," IEE Proc. — Micro. Antennas Propagat., Vol. 142, 7-13, Feb. 1995.
doi:10.1049/ip-map:19951540

22. Waterhouse, R. B., "Design of probe-fed stacked patches," IEEE Trans. Antennas Propagat., Vol. 47, 1780-1784, Dec. 1999.
doi:10.1109/8.817653

23. Reineix, A. and B. Jecko, "Analysis of microstrip patch antennas using finite difference time domain method," IEEE Trans. Antennas Propagat., Vol. 31, 381-390, Mar. 1991.

24. Liu, Z.-F., P.-S. Kooi, L.-W. Li, M.-S. Leong, and T.-S. Yeo, "A method for designing broad-band microstrip antennas in multilayered planar structure," IEEE Trans. Antennas Propagat., Vol. 47, 1416-1420, Sep. 1999.
doi:10.1109/8.793321

25. HFSS 13: Ansoft’s Corp, .

26. Tagle, J. G. and C. G. Christodoulou, "Extended cavity model analysis of stacked microstrip ring antennas," IEEE Trans. Antennas Propagat., Vol. 45, 1626-1635, Nov. 1997.
doi:10.1109/8.650074

27. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propagat., Vol. 32, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433

28. Bernhard, J. T. and C. J. Tousignant, "Resonant frequencies of rectangular microstrip antennas with flush and spaced dielectric superstrates," IEEE Trans. Antennas Propagat., Vol. 47, 302-308, Feb. 1999.
doi:10.1109/8.761070

29. Biswas, M. and M. Sen, "Design and development of rectangular patch antenna with superstrates for the application in portable wireless equipments and aircraft radome," Micro. Opt. Technol. Lett., Vol. 56, 883-893, Apr. 2014.
doi:10.1002/mop.28197

30. James, J. R. and P. S. Hall, Handbook of Mcrostrip Antennas, Peter Peregrinus, London, U.K., 1989.

31. Biswas, M. and A. Mandal, "Experimental and theoretical investigation to predict the effect of superstrate on the impedance, bandwidth, and gain characteristics for a rectangular patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 16, 2093-2109, 2015.
doi:10.1080/09205071.2015.1039072

32. Deshpande, M. and M. Bailey, "Input impedance of microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 30, 645-650, Jul. 1982.

33. Abboud, F., J. P. Damiano, and A. Papiernik, "Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD," IEE Proc., Vol. 135, Pt. H, 323-326, Oct. 1988.

34. Chattopadhyay, S., M. Biswas, J. Y. Siddiqui, and D. Guha, "Rectangular microstrips with variable air gap and varying aspect ratio: Improved formulations and experiments," Micro. Opt. Technol. Lett., Vol. 51, No. 1, 169-173, Jan. 2009.
doi:10.1002/mop.24025

35. Verma, A. K. and Nasimuddin, "Resonance frequency and bandwidth of rectangular microstrip antenna on thick substrate," IEEE Micro. Wireless Comp. Lett., Vol. 12, 60-62, Feb. 2002.
doi:10.1109/7260.982877

36. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012.

37. Khellaf, A., D. Thouroude, and J. P. Daniel, "Simple expression of rectangular patch’s resistance at resonance," Electron. Lett., Vol. 26, 1188-1190, Jul. 1990.

38. Hammerstad, E. O., "Equations for microstrip circuit design," Proc. 5th European Micro. Conf., 268-272, Hamburg, Sep. 1975.

39. James, J. R., P. S. Hall, and C. Wood, Microstrip Antenna --- Theory and Design, Peter Peregrinus, London, U.K., 1981.
doi:10.1049/PBEW012E

40. Chang, E., S. A. Long, and W. F. Richards, "Experimental investigation of electrically thick rectangular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 34, 767-772, Jun. 1986.
doi:10.1109/TAP.1986.1143890

41. Zhong, S.-S., G. Liu, and G. Qasim, "Closed form expressions for resonant frequency of rectangular patch antennas with multi dielectric layers," IEEE Trans. Antennas Propagat., Vol. 42, 1360-1363, Sept. 1994.
doi:10.1109/8.318667

42. Svacina, J., "Analysis of multilayer microstrip lines by a conformal mapping method," IEEE Trans. Microwave Theory Tech., Vol. 40, 769-772, Apr. 1992.
doi:10.1109/22.127530

43. Wheeler, H., "Transmission-line properties of parallel wide strips by a conformal mapping approximation," IEEE Trans. Microw. Theory Tech., Vol. 12, 280-289, Mar. 1964.
doi:10.1109/TMTT.1964.1125810

44. Wheeler, H. A., "Transmission-line properties of parallel strips separated by a dielectric sheet," IEEE Trans. Microwave Theory Tech., Vol. 13, 172-185, Mar. 1965.
doi:10.1109/TMTT.1965.1125962

45. Wolff, I. and N. Knoppik, "Rectangular and circular microstrip disk capacitors and resonators," IEEE Trans. Micro. Theory Tech., Vol. 22, 857-864, Oct. 1974.

47. Chew, W. C. and J. A. Kong, "Effects of fringing field on the capacitance of circular microstrip disk," IEEE Trans. Micro. Theory Tech., Vol. 28, 98-104, Feb. 1980.
doi:10.1109/TMTT.1980.1130017


© Copyright 2010 EMW Publishing. All Rights Reserved