PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 103-125

OPTIMIZATION OF LPDA EXCITATIONS AND THE PBM ANTENNA BENCHMARKS USING SHADE AND L-SHADE ALGORITHMS

By R. A. Formato and M. G. H. Omran

Full Article PDF (4,482 KB)

Abstract:
The SHADE and L-SHADE variants of the Differential Evolution global search and optimization algorithm are used to compute optimized excitations for a Log Periodic Dipole Array antenna and to numerically solve the Pantoja-Bretones-Martin suite of antenna benchmark problems. Comparison to published data shows that SHADE and L-SHADE both are effective and efficient algorithms for solving the array excitation problem and the Pantoja-Bretones-Martin wire antenna benchmarks. L-SHADE clearly is more efficient on the array problem, but overall on the benchmarks the opposite is true, albeit to a lesser degree. The data support the view that neither algorithm is generally better than the other for the type of wire antenna problems considered here. Rather, which algorithm is more efficient is highly dependent on the specific antenna being optimized. In terms of the quality of their solutions, however, both algorithms accurately return the benchmarks' known global optima while both converge on different optimal array excitations that result in very similar objective function fitnesses.

Citation:
R. A. Formato and M. G. H. Omran, "Optimization of LPDA Excitations and the PBM Antenna Benchmarks Using SHADE and L-SHADE Algorithms," Progress In Electromagnetics Research B, Vol. 79, 103-125, 2017.
doi:10.2528/PIERB17100701

References:
1. Dastranj, A., "Optimization of a printed UWB antenna: Application of the invasive weed optimization algorithm in antenna design," IEEE Antennas & Propagation Magazine, Vol. 59, No. 1, 48-57, Feb. 2017.
doi:10.1109/MAP.2016.2630025

2. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308

3. Dongho, K., J. Ju, and J. Choi, "A mobile communication base station antenna using a genetic algorithm based Fabry-Perot resonance optimization," IEEE Trans. Ant. & Prop., Vol. 60, No. 2, 1053, Feb. 2012.
doi:10.1109/TAP.2011.2173108

4. Goudos, S. K., "Antenna design using binary differential evolution: Application to discrete-valued design problems," IEEE Antennas & Propagation Magazine, Vol. 59, No. 1, 74-93, Feb. 2017.
doi:10.1109/MAP.2016.2630041

5. Ni, T., Y.-C. Jiao, L. Zhang, and Z.-B. Weng, "Worst-case tolerance synthesis for low-sidelobe sparse linear arrays using a novel self-adaptive hybrid differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 66, 91-105, 2016.
doi:10.2528/PIERB16011403

6. Lanza Diego, M., J. R. Perez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303

7. Deb, A., J. S. Roy, and B. Gupta, "Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas," IEEE Trans. Ant. & Prop., Vol. 62, No. 8, 3920-3928, Aug. 2014.
doi:10.1109/TAP.2014.2322880

8. Hosseini, S. A. and Z. Atlasbaf, "Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous ant colony optimization (ACO) method," Progress In Electromagnetics Research, Vol. 79, 321-337, 2008.
doi:10.2528/PIER07102901

9. Chang, L., C. Liao, W. Lin, L.-L. Chen, and X. Zheng, "A hybrid method based on differential evolution and continuous ant colony optimization and its application on wideband antenna design," Progress In Electromagnetics Research, Vol. 122, 105-118, 2012.
doi:10.2528/PIER11092207

10. Cui, C.-Y., Y.-C. Jiao, and L. Zhang, "Synthesis of some low sidelobe linear arrays using hybrid differential evolution algorithm integrated with convex programming," IEEE Ant. & Wireless Prop. Letters, Vol. 16, 2017.

11. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas & Propagation Magazine, Vol. 53, No. 1, 38-49, Feb. 2011.
doi:10.1109/MAP.2011.5773566

12. Hoorfar, A., "Evolutionary programming in electromagnetic optimization: A review," IEEE Trans. Ant. & Prop., Vol. 55, No. 3, 523-537, Mar. 2007.
doi:10.1109/TAP.2007.891306

13. Coleman, C. M., E. J. Rothwell, and J. E. Ross, "Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antenna," IEEE Trans. Ant. & Prop., Vol. 52, No. 4, 1007-1014, Apr. 2004.
doi:10.1109/TAP.2004.825658

14. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Ant. & Prop., Vol. 45, No. 3, 343-353, Mar. 1997.
doi:10.1109/8.558650

15. Yerrola, A. K. and P. Spandana, "Optimization of linear antennas — A survey," Int’l. J. Comp. App., Vol. 171, No. 3, 17-20, Aug. 2017.

16. Shan, A. and G. G. Wang, "Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions," Struc. & Multidisc. Opt., Vol. 41, 219-241, 2010.
doi:10.1007/s00158-009-0420-2

17. Kuwahara, Y., "Multiobjective optimization design of Yagi-Uda antenna," IEEE Trans. Ant. & Prop., Vol. 53, No. 6, 1984-1992, Jun. 2005.
doi:10.1109/TAP.2005.848501

18. Casula, G. A., G. Mazzarella, and N. Sirena, "Evolutionary design of wide-band parasitic dipole arrays," IEEE Trans. Ant. & Prop., Vol. 59, No. 11, 4094-4102, Nov. 2011.
doi:10.1109/TAP.2011.2164185

19. Saraereh, O. A., A. A. Saraira, Q. H. Alsafasfeh, and A. Arfoa, "Bio-inspired algorithms applied on microstrip patch antennas: A review," Int. J. Comm. Ant. & Prop. (I.Re.C.A.P.), Vol. 6, No. 6, 336-347, 2016.

20. Pantoja, M. F., A. R. Bretones, and R. G. Martin, "Benchmark antenna problems for evolutionary optimization algorithms," IEEE Trans. Ant. & Prop., Vol. 55, No. 4, 1111-1121, Apr. 2007.
doi:10.1109/TAP.2007.893396

21. Storn, R. and K. Price, "Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces,", TR-95-012, ICSI, USA, 1995.

22. Das, A., S. Mullick, and P. N. Suganthan, "Recent advances in differential evolution — An updated survey," Swarm & Evol. Comp., Vol. 27, 1-30, 2016.

23. Zhou, X., G. Zhang, X. Hao, and L. Yu, "A novel differential evolution algorithm using local abstract convex underestimate strategy for global optimization," Comp. & Op. Res., Vol. 75, 132-149, 2016.
doi:10.1016/j.cor.2016.05.015

24. Tanabe, R. and A. Fukunaga, "Success-history based parameter adaptation for differential evolution," Proc. IEEE Cong. Evol. Comp. 2013, 71-78, Cancun, Mexico, 2013.

25. Tanabe, R. and A. Fukunaga, "Improving the search performance of SHADE using linear population size reduction," Proc. IEEE Cong. Evol. Comp. 2014, 1658-1665, Beijing, 2014.
doi:10.1109/CEC.2014.6900380

26. Liang, J., B. Qu, P. Suganthan, and A. Hernandez-Diaz, Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization, Computational Intelligence Laboratory, Zhengzhou University, China and Technical Report, Nanyang Technological University, Singapore, 2013.

27. Liang, J., B. Qu, and P. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single-objective real-parameter numerical optimization, Computational Intelligence Laboratory, Zhengzhou University, China and Technical Report, Nanyang Technological University, Singapore, 2014.

28. Zhang, J. and C. Sanderson, "JADE: Adaptive differential evolution with optional external archive," IEEE Trans. Evol. Comp., Vol. 13, No. 5, 945-958, 2009.
doi:10.1109/TEVC.2009.2014613

29. Isbell, D. E., "Log periodic dipole arrays," IRE Trans. Ant. & Prop., Vol. 8, No. 3, 260-267, May 1960.
doi:10.1109/TAP.1960.1144848

30. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd Ed., Chap. 15, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1968.

31. Balanis, C. A., Antenna Theory: Analysis and Design, Section 11.4, Wiley, New York, 1997.

32. Yang, J., "On conditions for constant radiation characteristics for log-periodic array antennas," IEEE Trans. Ant. & Prop., Vol. 58, No. 5, 1521, May 2010.
doi:10.1109/TAP.2010.2044332

33. Lehmensiek, R. and D. I. L. de Villiers, "Optimization of log-periodic dipole array antennas for wideband omnidirectional radiation," IEEE Trans. Ant. & Prop., Vol. 63, No. 8, 3714, Aug. 2015.
doi:10.1109/TAP.2015.2434413

34. Lehmensiek, R. and D. I. L. de Villiers, "Constant radiation characteristics for log-periodic dipole array antennas," IEEE Trans. Ant. & Prop., Vol. 62, No. 5, 2966, May 2014.

35. Burke, G. J., Numerical electromagnetics code — NEC-4.2 method of moments, Part I: User’s manual, LLNL-SM-490875, Lawrence Livermore National Laboratory (USA), Livermore, CA, Jul. 2011.

36. Chowdhury, A., A. Ghosh, R. Giri, and S. Das, "Optimization of antenna configuration with a fitness-adaptive differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 26, 291-319, 2010.
doi:10.2528/PIERB10080703


© Copyright 2010 EMW Publishing. All Rights Reserved