Vol. 80
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-05-27
An Overview of UWB Antennas for Microwave Imaging Systems for Cancer Detection Purposes
By
Progress In Electromagnetics Research B, Vol. 80, 173-198, 2018
Abstract
In the last decades, microwave imaging has been a new area of research due to its many advantages over current imaging systems. Microwave imaging system is used for in-depth inspection of biological tissues. The test provides the identification of morphological changes in these biological tissues, as well as their locations. The emerging Ultra-Wideband (UWB) microwave imaging gives better result with the main advantage of using non-ionizing radiation. In these systems, antennas play a very important role, and as such, their optimization has become a very important topic because of the device is placed close to the human body. Thus, many aspects are of great importance in the design of the antennas starting from the material with which it is constructed, its dimensions, operation bandwidth, human body influence on the antenna parameters, short-pulse propagation, etc. Recent research has shown several efforts in improving the electromagnetic sensors used in these systems, either as individual or array elements. In this paper, we provide an overview of the most relevant developments in the field of UWB high directivity sensors used in microwave imaging systems.
Citation
Berenice Borja, José Alfredo Tirado-Méndez, and Hildeberto Jardon-Aguilar, "An Overview of UWB Antennas for Microwave Imaging Systems for Cancer Detection Purposes," Progress In Electromagnetics Research B, Vol. 80, 173-198, 2018.
doi:10.2528/PIERB18030302
References

1. Shin, S., El cancer, https://www.aecc.es/SobreElCancer/elcancer/Paginas/Elcancer.aspx, accessed Enero, 2017.

2. Farinas-Coronado, W., Z. Paz, G. J. Orta, and E. Rodriguez-Denis, "Estudio del factor de disipacion dielectrica como herramienta diagnostica," Revista Biomdica, Vol. 13, No. 4, 249-255, 2002.

3. Fass, L., "Imaging and cancer: A review," Molecular Oncology, Vol. 2, No. 2, 115-152, 2008.

4. Gallego, A. R., "Riesgos derivados de la exposicion a dosis bajas de radiacion ionizante," Revista de Salud Ambiental, Vol. 10, No. 1-2, 43-48, 2010.

5. Nunez, M., "Efectos biologicos de las radiaciones-dosimetra," Escuela Universitaria de Tecnologia Medica UdelaR Comite de Tecnologos de ALASBIMN, Montevideo, Uruguay, 2008.

6. Roldan, T., V. Aramburu, G. Leguizamon, and C. Hoffmann, "Efectos Biologicos de las radiaciones Ionizantes," Ciencia, Vol. 1, No. 1, 321-330, 2003.

7. Real Gallego, A., "Efectos biologicos de las radiaciones ionizantes," Master de Fisica Biomedica, Vol. Facultad CC, Fisicas-UCM, 2014.

8. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 12, 1470-1479, 1998.

9. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 783-791, 1999.

10. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, 1999.

11. Fear, E. C. and M. A. Stuchl, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1854-1863, 2000.

12. Pagliari, D. J., A. PulimenoVacca, J. A. Tobon, F. Vipiana, M. R. Casu, and L. P. Carloni, "A low-cost, fast, and accurate microwave imaging system for breast cancer detection," IEEE Biomedical Circuits and Systems Conference (BioCAS), 1-4, 2015.

13. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. A. S. A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.

14. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Transactions on Medical Imaging, Vol. 31, No. 8, 1584-1592, 2012.

15. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.

16. Nilavalan, R., J. Leendertz, I. J. Craddock, A. Preece, and R. Benjamin, "Numerical analysis of microwave detection of breast tumours using synthetic focussing techniques," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2440-2443, 2004.

17. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, No. 10, 2637, 2007.

18. Moosazadeh, M. and S. Kharkovsky, "Design of ultra-wideband antipodal Vivaldi antenna for microwave imaging applications," IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, 2015.

19. Ruvio, G., M. J. Ammann, M. John, R. Solimene, A. D'Alterio, and R. Pierri, "UWB breast cancer detection with numerical phantom and Vivaldi antenna," IEEE International Conference on Ultra-Wideband (ICUWB), 8-11, 2011.

20. Afifi, A. I., A. B. Abdel-Rahman, A. Allam, and A. A. El-Hameed, "A compact ultra-wideband monopole antenna for breast cancer detection," IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 1-4, 2016.

21. Molaei, A., M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, "Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 14, 1137-1142, 2014.

22. Bahrami, H., E. Porter, A. Santonelli, B. Gosselin, M. Popovic, and L. A. Rusch, "Flexible sixteen monopole antenna array for microwave breast cancer detection," 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3775-3778, 2014.

23. Islam, M. M., M. T. Islam, M. Samsuzzaman, M. R. I. Faruque, and N. Misran, "Microstrip line-fed fractal antenna with a high fidelity factor for UWB imaging applications," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2580-2585, 2015.

24. Zehforoosh, Y., M. Naser-Moghadasi, S. Ra, and C. Ghobadi, "Miniature monopole fractal antenna with inscribed arrowhead cuts for UWB applications," IEICE Electronics Express, Vol. 9, No. 24, 1855-1860, 2012.

25. Naser-Moghadasi, M., R. A. Sadeghzadeh, T. Aribi, T. Sedghi, and B. S. Virdee, "UWB monopole microstrip antenna using fractal tree unit-cells," Microwave and Optical Technology Letters, Vol. 54, No. 10, 2366-2370, 2012.

26. Tripathi, S., A. Mohan, and S. Yadav, "Ultra-wideband antenna using Minkowski-like fractal geometry," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2273-2279, 2014.

27. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2212-2216, 2006.

28. Abbosh, A. M., "Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 690-692, 2009.

29. Gibbins, D., M. Klemm, I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "A comparison of a wide-slot and a stacked patch antenna for the purpose of breast cancer detection," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 665-674, 2010.

30. Islam, M. M., M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, "A negative index metamaterial antenna for UWB microwave imaging applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1352-1361, 2015.

31. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Wideband microstrip patch antenna design for breast cancer tumour detection," IET Microwaves, Antennas & Propagation, Vol. 1, No. 2, 277-281, 2007.

32. Benjamin, R., I. J. Craddock, G. S. Hilton, S. Litobarski, E. Mc Cutcheon, R. Nilavalan, and G. N. Crisp, "Microwave detection of buried mines using non-contact, synthetic near-field focusing," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 148, No. 4, 233-240, 2001.

33. Nilavalan, R., A. Gbedemah, I. J. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," Electronics Letters, Vol. 39, No. 25, 1787-1789, 2003.

34. Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Breast cancer tumour detection using microwave radar techniques," URSI EMTS Int. Symp. on Electromag. Theory, Vol. 1, 117-119, 2004.

35. Nilavalan, R., J. Leendertz, I. J. Craddock, R. Benjamin, and A. Preece, "Breast tumour detection using a flat 16 element array," EMC Zurich, 2005.

36. Craddock, I. J., A. Preece, J. Leendertz, M. Klemm, R. Nilavalan, and R. Benjamin, "Development of a hemi-spherical wideband antenna array for breast cancer imaging," First European Conference on Antennas and Propagation, EuCAP, 1-5, 2006.

37. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, 2009.

38. Klemm, M., I. J. Craddock, J. Leendertz, A. W. Preece, and R. Benjamin, "Breast cancer detection using symmetrical antenna array," The Second European Conference on Antennas and Propagation, EuCAP, 1-5, 2007.

39. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "An improved hemispeherical antenna array design for breast imaging," The Second European Conference on Antennas and Propagation, EuCAP, 1-5, 2007.

40. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benajmin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," IEEE Antennas and Propagation Society International Symposium, AP-S, 1-4, 2008.

41. Gibbins, D., M. Klemm, I. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Design of a UWB wide-slot antenna and a hemispherical array for breast imaging," 3rd European Conference on Antennas and Propagation, EuCAP, 2967-2970, 2009.

42. Sze, J.-Y. and K.-L. Wong, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1020-1024, 2001.

43. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2337-2344, 2010.

44. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, D. R. Gibbins, M. Shere, and R. Benjamin, "Clinical trials of a UWB imaging radar for breast cancer," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 1-4, 2010.

45. Klemm, M., D. Gibbins, J. Leendertz, T. Horseman, A. W. Preece, R. Benjamin, and I. J. Craddock, "Development and testing of a 60-element UWB conformal array for breast cancer imaging," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 3077-3079, 2011.

46. Jalilvand, M., X. Li, L. Zwirello, and T. Zwick, "Ultra wideband compact near-field imaging system for breast cancer detection," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1009-1014, 2015.

47. Bahramiabarghouei, H., E. Porter, A. Santorelli, B. Gosselin, M. Popovic, and L. A. Rusch, "Flexible 16 antenna array for microwave breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 10, 2516-2525, 2015.

48. Porter, E., H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Transactions on Medical Imaging, Vol. 35, No. 6, 1501-1509, 2016.

49. Wang, F. and T. Arslan, "Inkjet-printed antenna on exible substrate for wearable microwave imaging applications," Antennas & Propagation Conference (LAPC), 1-4, Loughborough, 2016.

50. Katbay, Z., S. Sadek, R. Lababidi, A. Perennec, and M. Le Roy, "Miniature antenna for breast tumor detection," IEEE 13th International New Circuits and Systems Conference (NEWCAS), 1-4, 2015.

51. Katbay, Z., S. Sadek, M. Le Roy, R. Lababidi, A. Perennec, and P. F. Dupre, "Microstrip back-cavity Hilbert fractal antenna for experimental detection of breast tumors," IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-4, 2016.

52. Afyf, A., L. Bellarbi, A. Errachid, and M. A. Sennouni, "Flexible microstrip CPW sloted antenna for breast cancer detection," International Conference on Electrical and Information Technologies (ICEIT), 292-295, 2015.

53. Khaleel, H. R., H. M. Al-Rizzo, and A. I. Abbosh, "Design, fabrication, and testing of flexible antennas," Advancement in Microstrip Antennas with Recent Applications, 363-383, 2013.

54. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.

55. Shrivervik, A. K., J. F. Zurcher, O. Staub, and J. R. Mosing, "PCS antenna design: The challenge of miniaturization," IEEE Antennas and propagation Magazine, Vol. 43, No. 4, 12-27, 2001.

56. Latif, S., D. Flores-Tapia, S. Pistorious, and L. Shafai, "A planar ultrawideband elliptical monopole antenna with re ector for breast microwave imaging," Microwave and Optical Technology Letters, Vol. 56, No. 4, 808-813, 2014.

57. Song, H., S. Kubota, X. Xiao, and T. Kikkawa, "Design of UWB antennas for breast cancer detection," International Conference on Electromagnetics in Advanced Applications (ICEAA), 321-322, 2016.

58. Thior, A., A. C. Lepaga, and X. Begaud, "Low profile, directive and ultra wideband antenna on a high impedance surface," 3rd European Conference on Antennas and Propagation, EuCAP, 3222-3226, 2009.

59. Hasan, K., M. El Hadidy, and H. Morsi, "Reflectarray antenna for breast cancer detection and biomedical applications," IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-3, 2016.

60. Bashri, M. S., T. Arslan, W. Zhou, and N. Haridas, "Wearable device for microwave head imaging," 46th European Microwave Conference (EuMC), 671-674, 2016.

61. Elsherbini, A., C. Zhang, S. Lin, M. Kuhn, A. Kamel, A. E. Fathy, and H. Elhennawy, "UWB antipodal vivaldi antennas with protruded dielectric rods for higher gain, symmetric patterns and minimal phase center variations," IEEE Antennas and Propagation Society International Symposium, 1973-1976, 2007.

62. Peyrot Solis, M. A., G. M. Galvan Tejada, and H. Jardon Aguilar, "State of the art in ultra-wideband antennas," 2nd International Conference on Electrical and Electronics Engineering, 101-105, 2005.

63. Bai, J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4-50-GHz UWB application," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1051-1057, 2011.

64. Bhavanam, S. N. and V. Midasala, "Design of Vivaldi antenna," Proceedings of International Conference on Innovations in Electronics and Communication Engineering (ICIECE), 28-34, 2014.

65. Wang, Y., A. Abbosh, and B. Henin, "Microwave breast imaging sensor using compact and directive antenna with fixed mainbeam direction," Cairo International Biomedical Engineering Conference (CIBEC), 187-190, 2012.

66. Kikuta, K. and A. Hirose, "Dispersion characteristics of ultra wideband antennas and their radiation patterns," Proceedings of URSI International Symposium on Electromagnetic Theory (EMTS), 462-465, 2013.

67. Gibson, P. J., "The Vivaldi aerial," 9th European IEEE Microwave Conference, 101-105, 1979.

68. Zhang, H., T. Arslan, and B. Flynn, "A single antenna based microwave system for breast cancer detection: Experimental results," IEEE Antennas and Propagation Conference (LAPC), 477-481, Loughborough, 2013.

69. Zhang, H., A. O. El-Rayis, N. Haridas, N. H. Noordin, A. T. Erdogan, and T. Arslan, "A smart antenna array for brain cancer detection," IEEE Antennas and Propagation Conference (LAPC), 1-4, Loughborough, 2011.

70. Angel, J. J. and T. A. J. Mary, "Design of Vivaldi antenna for brain cancer detection," International Conference on IEEE Electronics and Communication Systems (ICECS), 1-4, 2014.

71. Abbosh, A. M., H. K. Kan, and M. E. Blalkowski, "Design of compact directive ultra wideband antipodal antenna," Microwave and Optical Technology Letters, Vol. 48, No. 12, 2448-2450, 2006.

72. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system," Microwave and Optical Technology Letters, Vol. 48, No. 10, 2212-2216, 2006.

73. Abbosh, A. M., "Directive antenna for ultrawideband medical imaging systems," International Journal of Antennas and Propagation, Vol. 2008, 6 pages, Article ID 854012, 2008.

74. Beada'a, J. M., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, 117-123, 2014.

75. Langley, J. D. S., P. S. Hall, and P. Newham, "Novel ultrawide-bandwidth Vivaldi antenna with low crosspolarisation," Electronics Letters, Vol. 29, No. 23, 2004-2005, 1993.

76. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna for breast cancer detection," The Second European Conference on IEEE Antennas and Propagation, EuCAP, 1-5, 2007.

77. Yang, F. and A. S. Mohan, "Microwave imaging for breast cancer detection using Vivaldi antenna array," International Symposium on IEEE Antennas and Propagation (ISAP), 479-482, 2012.

78. Ahsan, S., P. Kosmas, I. Sotiriou, G. Palikaras, and E. Kallos, "Balanced antipodal Vivaldi antenna array for microwave tomography," IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, 2014.

79. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010.

80. Ahsan, S., B. Yeboah-Akowuah, P. Kosmas, H. C. Garcia, G. Palikaras, and E. Kallos, "Balanced antipodal vivaldi antenna for microwave tomography," EAI 4th International Conference on IEEE Wireless Mobile Communication and Healthcare (Mobihealth), 316-319, 2014.

81. Bah, M. H., J. Hong, D. A. Jamro, J. J. Liang, and E. A. Kponou, "Vivaldi antenna and breast phantom design for breast cancer imaging," 7th International Conference on IEEE Biomedical Engineering and Informatics (BMEI), 90-93, 2014.

82. Bah, M. H., J. S. Hong, and D. A. Jamro, "UWB antenna design and implementation for microwave medical imaging applications," IEEE International Conference on Communication Software and Networks (ICCSN), 151-155, 2015.

83. Mohammed, B. A. J., A. M. Abbosh, and P. Sharpe, "Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, No. 1, 59-66, 2013.

84. Kanjaa, M., O. E. Mrabet, M. Khalladi, and M. Essaaidi, "Exponentially tapered antipodal Vivaldi antenna for breast cancer detection," IEEE 15th Mediterranean Microwave Symposium (MMS), 1-3, 2015.

85. Ba, H. C., H. Shirai, and C. D. Ngoc, "Analysis and design of antipodal Vivaldi antenna for UWB applications," IEEE Fifth International Conference on Communications and Electronics (ICCE), 391-394, 2014.

86. Cao, Y., J. Lei, Y. Wei, and L. Zhu, "A compact BAVA design with corrugated edge," 3rd Asia- Paci c Conference on Antennas and Propagation (APCAP), 259-262, 2014.