Vol. 90
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-01-10
Radiation from a Dipole Antenna Located Outside a Cylindrical Density Depletion in a Magnetoplasma Under Resonance Scattering Conditions
By
Progress In Electromagnetics Research B, Vol. 90, 109-128, 2021
Abstract
Resonance interaction between the electromagnetic radiation from a dipole antenna and a cylindrical density depletion aligned with an external static magnetic field in a magnetoplasma is studied in the case where the antenna is located outside such a density irregularity. A distinctive feature of the presented analysis is using a realistic distribution of the antenna current instead of the assumed one. It is shown that such an antenna can excite plasmon resonances of the density depletion, along with the resonance at the plasma frequency of the outer region. In addition, previously unrevealed resonances of the total field, which are related to excitation of complex modes of the cylindrical density depletion, are discussed. The results obtained can be helpful in understanding the basic properties of resonance interaction of the antenna fields with cylindrical density irregularities in a magnetoplasma and planning the related experiments in the ionospheric and laboratory plasmas.
Citation
Alexander V. Kudrin, Alexander V. Ivoninsky, and Oleg M. Ostafiychuk, "Radiation from a Dipole Antenna Located Outside a Cylindrical Density Depletion in a Magnetoplasma Under Resonance Scattering Conditions," Progress In Electromagnetics Research B, Vol. 90, 109-128, 2021.
doi:10.2528/PIERB20111002
References

1. Fialer, P. A., "Field-aligned scattering from a heated region of the ionosphere — Observations at HF and VHF," Radio Sci., Vol. 9, No. 11, 923-940, 1974.
doi:10.1029/RS009i011p00923

2. Stenzel, R. L., "Filamentation instability of a large amplitude whistler wave," Phys. Fluids, Vol. 19, No. 6, 865-871, 1976.
doi:10.1063/1.861552

3. Sugai, H., M. Maruyama, M. Sato, and S. Takeda, "Whistler wave ducting caused by antenna actions," Phys. Fluids, Vol. 21, No. 4, 690-694, 1978.
doi:10.1063/1.862278

4. Vdovichenko, I. A., G. A. Markov, V. A. Mironov, and A. M. Sergeev, "Ionizational self-ducting of whistlers in a plasma," JETP Lett., Vol. 44, No. 5, 275-279, 1986.

5. Stenzel, R. L., "Whistler waves in space and laboratory plasmas," J. Geophys. Res., Vol. 104, No. A7, 14379-14395, 1999.
doi:10.1029/1998JA900120

6. Bell, T. F. and H. D. Ngo, "Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities," J. Geophys. Res., Vol. 95, No. A1, 149-172, 1990.
doi:10.1029/JA095iA01p00149

7. Bamber, J. F., W. Gekelman, and J. E. Maggs, "Whistler wave mode conversion to lower hybrid waves at a density striation," Phys. Rev. Lett., Vol. 73, No. 22, 2990-2993, 1994.
doi:10.1103/PhysRevLett.73.2990

8. Calvert, W., "Wave ducting in different wave modes," J. Geophys. Res., Vol. 100, No. A9, 17491-17497, 1995.
doi:10.1029/95JA01131

9. Streltsov, A. V., M. Lampe, W. Manheimer, G. Ganguli, and G. Joyce, "Whistler propagation in inhomogeneous plasma," J. Geophys. Res., Vol. 111, No. A3, A03216, 2006.

10. Streltsov, A. V., J. Woodroffe, W. Gekelman, and P. Pribyl, "Modeling the propagation of whistler-mode waves in the presence of field-aligned density irregularities," Phys. Plasmas, Vol. 19, No. 5, 052104, 2012.
doi:10.1063/1.4719710

11. Woodroffe, J. R., A. V. Streltsov, A. Vartanyan, and G. M. Milikh, "Whistler propagation in ionospheric density ducts: Simulations and DEMETER observations," J. Geophys. Res., Vol. 118, No. 11, 7011-7018, 2013.
doi:10.1002/2013JA019445

12. Woodroffe, J. R. and A. V. Streltsov, "Whistler interaction with field-aligned density irregularities in the ionosphere: Refraction, diffraction, and interference," J. Geophys. Res., Vol. 119, No. 7, 5790-5799, 2014.
doi:10.1002/2013JA019683

13. Hall, J. O. and T. B. Leyser, "Conversion of trapped upper hybrid oscillations and Z mode at a plasma density irregularity," Phys. Plasmas, Vol. 10, No. 6, 2509-2518, 2003.
doi:10.1063/1.1574813

14. Hall, J. O., Ya. N. Istomin, and T. B. Leyser, "Electromagnetic coupling of localized upper hybrid oscillations in a system of density depletions," Phys. Plasmas, Vol. 16, No. 1, 012902, 2009.
doi:10.1063/1.3068744

15. Eliasson, B. and T. B. Leyser, "Numerical study of upper hybrid to Z-mode leakage during electromagnetic pumping of groups of striations in the ionosphere," Ann. Geophys., Vol. 33, No. 8, 1019-1030, 2015.
doi:10.5194/angeo-33-1019-2015

16. Starodubtsev, M. V., V. V. Nazarov, M. E. Gushchin, and A. V. Kostrov, "Laboratory modeling of ionospheric heating experiments," J. Geophys. Res., Vol. 121, No. 10, 10481-10495, 2016.
doi:10.1002/2015JA021898

17. Starodubtsev, M., S. Korobkov, M. Gushchin, S. Grach, and V. Nazarov, "Ducting of upper-hybrid waves by density depletions in a magnetoplasma with weak spatial dispersion," Phys. Plasmas, Vol. 26, No. 7, 072902, 2019.
doi:10.1063/1.5099338

18. Benson, R. F., P. A. Webb, J. L. Green, D. L. Carpenter, V. S. Sonwalkar, H. G. James, and B. W. Reinisch, "Active wave experiments in space plasmas: The Z mode," Lect. Notes Phys., Vol. 687, 3-35, 2006.
doi:10.1007/3-540-33203-0_1

19. Kondrat’ev, I. G., A. V. Kudrin, and T. M. Zaboronkova, Electrodynamics of Density Ducts in Magnetized Plasmas, Gordon and Breach, Amsterdam, 1999.

20. Streltsov, A. V., J.-J. Berthelier, A. A. Chernyshov, V. L. Frolov, F. Honary, M. J. Kosch, R. P. McCoy, E. V. Mishin, and M. T. Rietveld, "Past, present and future of active radio frequency experiments in space," Space Sci. Rev., Vol. 214, 118, 2018.
doi:10.1007/s11214-018-0549-7

21. Vandenplas, P. E., Electron Waves and Resonances in Bounded Plasmas, Interscience Publishers, London, 1968.

22. Krall, N. A. and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973.

23. Bryant, G. H. and R. N. Franklin, "The scattering of a plane wave by a bounded plasma," Proc. Phys. Soc., Vol. 81, No. 3, 531-543, 1963.
doi:10.1088/0370-1328/81/3/322

24. Parker, J. V., J. C. Nickel, and R. W. Gould, "Resonance oscillations in a hot nonuniform plasma," Phys. Fluids, Vol. 7, No. 9, 1489-1500, 1964.
doi:10.1063/1.1711404

25. Crawford, F. W., "Internal resonances of a discharge column," J. Appl. Phys., Vol. 35, No. 5, 1365-1369, 1964.
doi:10.1063/1.1713635

26. Messiaen, A. M. and P. E. Vandenplas, "Resonant behaviour of a cylindrical column of plasma in free space with and without steady magnetic fields," Physica, Vol. 28, No. 6, 537-552, 1962.
doi:10.1016/0031-8914(62)90108-8

27. Crawford, F. W., G. S. Kino, and A. B. Cannara, "Dipole resonances of a plasma in a magnetic field," J. Appl. Phys., Vol. 34, No. 11, 3168-3175, 1963.
doi:10.1063/1.1729157

28. Schmitt, H. J., G. Meltz, and P. J. Freyheit, "Gyrotropic resonances in afterglow plasmas," Phys. Rev., Vol. 139, No. 5A, A1432-A1440, 1965.
doi:10.1103/PhysRev.139.A1432

29. Seshadri, S. R., "Plane-wave scattering by a magnetoplasma cylinder," Electron. Lett., Vol. 1, No. 9, 256-258, 1965.
doi:10.1049/el:19650232

30. Vandenplas, P. E. and A. M. Messiaen, "Scattering of electromagnetic waves by a cylindrical plasma in a steady magnetic field: I. Anisotropy effects," Nucl. Fusion, Vol. 5, No. 1, 47-55, 1965.
doi:10.1088/0029-5515/5/1/006

31. Buchsbaum, S. J. and A. Hasegawa, "Excitation of longitudinal plasma oscillations near electron cyclotron harmonics," Phys. Rev. Lett., Vol. 12, No. 25, 685-688, 1964.
doi:10.1103/PhysRevLett.12.685

32. Buchsbaum, S. J. and A. Hasegawa, "Longitudinal plasma oscillations near electron cyclotron harmonics," Phys. Rev., Vol. 143, No. 1, 303-309, 1966.
doi:10.1103/PhysRev.143.303

33. Es’kin, V. A., A. V. Ivoninsky, and A. V. Kudrin, "Scattering of an obliquely incident plane electromagnetic wave by a magnetized plasma column: Energy flow patterns at plasmon resonances," Progress In Electromagnetics Research B, Vol. 63, 173-186, 2015.
doi:10.2528/PIERB15080402

34. Es’kin, V. A., A. V. Ivoninsky, A. V. Kudrin, and C. Krafft, "Poynting vector behaviour during the resonance scattering of a plane electromagnetic wave by a gyrotropic cylinder," Phys. Scr., Vol. 91, No. 1, 015502, 2016.
doi:10.1088/0031-8949/91/1/015502

35. Es’kin, V. A., A. V. Ivoninsky, A. V. Kudrin, and L. L. Popova, "Electromagnetic radiation from filamentary sources in the presence of axially magnetized cylindrical plasma scatterers," J. Exp. Theor. Phys., Vol. 124, No. 2, 202-212, 2017.
doi:10.1134/S1063776117020030

36. Kelley, M. C., T. L. Arce, J. Salowey, M. Sulzer, W. T. Armstrong, M. Carter, and L. Duncan, "Density depletions at the 10-m scale induced by the Arecibo heater," J. Geophys. Res., Vol. 100, No. A9, 17367-17376, 1995.
doi:10.1029/95JA00063

37. Stubbe, P., "Review of ionospheric modification experiments at Tromsø," J. Atmos. Terr. Phys., Vol. 58, No. 1–4, 349-368, 1996.
doi:10.1016/0021-9169(95)00041-0

38. Frolov, V. L., L. M. Erukhimov, S. A. Metelev, and E. N. Sergeev, "Temporal behaviour of artificial small-scale ionospheric irregularities: Review of experimental results," J. Atmos. Sol. Terr. Phys., Vol. 59, No. 18, 2317-2333, 1997.
doi:10.1016/S1364-6826(96)00126-5

39. Tereshchenko, E. D., B. Z. Khudukon, A. V. Gurevich, K. P. Zybin, V. L. Frolov, E. N. Myasnikov, N. V. Muravieva, and H. C. Carlson, "Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes," Phys. Lett. A, Vol. 325, No. 5–6, 381-388, 2004.
doi:10.1016/j.physleta.2004.03.055

40. Gurevich, A. V., "Nonlinear effects in the ionosphere," Phys. Usp., Vol. 50, No. 11, 1091-1121, 2007.
doi:10.1070/PU2007v050n11ABEH006212

41. Blagoveshchenskaya, N. F., T. D. Borisova, T. K. Yeoman, M. T. Rietveld, I. M. Ivanova, and L. J. Baddeley, "Artificial small-scale field-aligned irregularities in the high latitude F region of the ionosphere induced by an X-mode HF heater wave," Geophys. Res. Lett., Vol. 38, No. 8, L08802, 2011.
doi:10.1029/2011GL046724

42. Vartanyan, A., G. M. Milikh, E. Mishin, M. Parrot, I. Galkin, B. Reinisch, J. Huba, G. Joyce, and K. Papadopoulos, "Artificial ducts caused by HF heating of the ionosphere by HAARP," J. Geophys. Res., Vol. 117, No. A11, A10307, 2012.

43. Najmi, A., G. Milikh, J. Secan, K. Chiang, M. Psiaki, P. Bernhardt, S. Briczinski, C. Siefring, C. L. Chang, and K. Papadopoulos, "Generation and detection of super small striations by F region HF heating," J. Geophys. Res., Vol. 119, No. 7, 6000-6011, 2014.
doi:10.1002/2014JA020038

44. Grach, S. M., E. N. Sergeev, E. V. Mishin, and A. V. Shindin, "Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves," Phys. Usp., Vol. 59, No. 11, 1091-1128, 2016.
doi:10.3367/UFNe.2016.07.037868

45. Zaboronkova, T. M., A. V. Kostrov, A. V. Kudrin, A. V. Tikhonov, S. V. Tronin, and A. A. Shaikin, "Channeling of waves in the whistler frequency range within nonuniform plasma structures," Sov. Phys. JETP, Vol. 75, No. 4, 625-632, 1992.

46. Kostrov, A. V., A. V. Kudrin, L. E.Kurina, G. A. Luchinin, A. A. Shaykin, and T. M. Zaboronkova, "Whistlers in thermally generated ducts with enhanced plasma density: Excitation and propagation," Phys. Scr., Vol. 62, No. 1, 51-65, 2000.
doi:10.1238/Physica.Regular.062a00051

47. Nazarov, V. V., M. V. Starodubtsev, and A. V. Kostrov, "Nonlinear trapping and self-guiding of magnetized Langmuir waves due to thermal plasma filamentation," Phys. Plasmas, Vol. 14, No. 12, 122106, 2007.
doi:10.1063/1.2822161

48. Aidakina, N., M. Gushchin, I. Zudin, S. Korobkov, and A. Strikovskiy, "Laboratory study of interaction of magnetoplasma irregularities produced by several radio-frequency heating sources," Phys. Plasmas, Vol. 25, No. 7, 072114, 2018.
doi:10.1063/1.5012554

49. Ivoninsky, A. V. and A. V. Kudrin, "Resonance scattering of an extraordinary wave by a cylindrical density depletion in a magnetoplasma," Phys. Plasmas, Vol. 25, No. 10, 102112, 2018.
doi:10.1063/1.5054687

50. Arnush, D., "The role of Trivelpiece-Gould waves in antenna coupling to helicon waves," Phys. Plasmas, Vol. 7, No. 7, 3042-3050, 2000.
doi:10.1063/1.874157

51. Carter, M. D., F. W. Baity, G. C. Barber, R. H. Goulding, Y. Mori, D. O. Sparks, K. F. White, E. F. Jaeger, F. R. Chang-Dıaz, and J. P. Squire, "Comparing experiments with modeling for light ion helicon plasma sources," Phys. Plasmas, Vol. 9, No. 12, 5097-5110, 2002.
doi:10.1063/1.1519539

52. Chen, F. F., "Helicon discharges and sources: A review," Plasma Sources Sci. Technol., Vol. 24, No. 1, 014001, 2015.
doi:10.1088/0963-0252/24/1/014001

53. Zaboronkova, T. M., A. V. Kudrin, and M. Yu. Lyakh, "Excitation of nonsymmetric waves by given sources in a magnetoplasma in the presence of a cylindrical plasma channel," Radiophys. Quantum Electron., Vol. 46, No. 5–6, 407-424, 2003.
doi:10.1023/A:1026371902173

54. Kudrin, A. V., P. V. Bakharev, C. Krafft, and T. M. Zaboronkova, "Whistler wave radiation from a loop antenna located in a cylindrical density depletion," Phys. Plasmas, Vol. 16, No. 6, 063502, 2009.
doi:10.1063/1.3142469

55. Pfannmoller, J. P., C. Lechte, O. Grulke, and T. Klinger, "Investigations on loop antenna excited whistler waves in a cylindrical plasma based on laboratory experiments and simulations," Phys. Plasmas, Vol. 19, No. 10, 102113, 2012.
doi:10.1063/1.4763558

56. Kudrin, A. V., N. M. Shkokova, O. E. Ferencz, and T. M. Zaboronkova, "Whistler wave radiation from a pulsed loop antenna located in a cylindrical duct with enhanced plasma density," Phys. Plasmas, Vol. 21, No. 11, 112115, 2014.
doi:10.1063/1.4901949

57. Kudrin, A. V., O. M. Ostafiychuk, and T. M. Zaboronkova, "Excitation of whistler waves below the lower hybrid frequency by a loop antenna located in an enhanced density duct," Phys. Plasmas, Vol. 24, No. 8, 082109, 2017.
doi:10.1063/1.4996908

58. Kondrat’ev, I. G., A. V. Kudrin, and T. M. Zaboronkova, "The use of near-antenna artificial density ducts for increasing the power of VLF radiation in space plasma," J. Atmos. Sol. Terr. Phys., Vol. 59, No. 18, 2475-2488, 1997.
doi:10.1016/S1364-6826(96)00141-1

59. Kudrin, A. V., M. Yu. Lyakh, and T. M. Zaboronkova, "Wave emission from an open-ended cylindrical channel in a cold magnetoplasma," IEEE Trans. Antennas Propag., Vol. 49, No. 12, 1645-1648, 2001.
doi:10.1109/8.982442

60. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford, 1970.

61. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, 1973.

62. Lee, S. W. and Y. T. Lo, "Current distribution and input admittance of an infinite cylindrical antenna in anisotropic plasma," IEEE Trans. Antennas Propag., Vol. 15, No. 2, 244-252, 1967.
doi:10.1109/TAP.1967.1138871

63. Lee, S. W., "Cylindrical antenna in uniaxial resonant plasmas," Radio Sci., Vol. 4, No. 2, 179-189, 1969.
doi:10.1029/RS004i002p00179

64. Chugunov, Yu. V., "The theory of a thin metal antenna in anisotropic media," Radiophys. Quantum Electron., Vol. 12, No. 6, 661-664, 1969.
doi:10.1007/BF01031245

65. Zaboronkova, T. M., A. V. Kudrin, and E. Yu. Petrov, "VLF current distribution on a cylindrical VLF antenna in a magnetoplasma," Radiophys. Quantum Electron., Vol. 42, No. 8, 660-673, 1999.
doi:10.1007/BF02676852

66. Kudrin, A. V., E. Yu. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Insulated cylindrical antenna in a cold magnetoplasma," Progress In Electromagnetics Research, Vol. 53, 135-166, 2005.
doi:10.2528/PIER04090101

67. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 2007.

68. Tamir, T. and A. A. Oliner, "The spectrum of electromagnetic waves guided by a plasma layer," Proc. IEEE, Vol. 51, No. 2, 317-332, 1963.
doi:10.1109/PROC.1963.1758

69. Shevchenko, V. V., Continuous Transitions in Open Waveguides, Golem Press, Boulder, 1971.