Vol. 91
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-03-10
Diffraction Radiation Generated by a Density-Modulated Electron Beam Flying Over the Periodic Boundary of the Medium Section. III. Anomalous and Resonant Phenomena
By
Progress In Electromagnetics Research B, Vol. 91, 143-155, 2021
Abstract
The paper is focused on reliable analysis of the phenomena associated with the resonant and anomalous transformation of the field of a plane, density modulated electron beam, flying over the periodically rough boundary of a natural or artificial medium, in the field of bulk outgoing waves. The physical results presented here have been obtained as the result of numerical implementation of the rigorous mathematical models described in the two first papers of this series. The corresponding analytical constructions have been associated with the correct formulation of model problems and their algorithmization, with the provision of the possibility of a correct physical interpretation of the results of their numerical solution.
Citation
Yuriy Sirenko, Seil S. Sautbekov, Nataliya Yashina, and Kostyantyn Sirenko, "Diffraction Radiation Generated by a Density-Modulated Electron Beam Flying Over the Periodic Boundary of the Medium Section. III. Anomalous and Resonant Phenomena," Progress In Electromagnetics Research B, Vol. 91, 143-155, 2021.
doi:10.2528/PIERB21022101
References

1. Sirenko, Y., S. Sautbekov, N. Yashina, and K. Sirenko, "Diffraction radiation generated by a density-modulated electron beam flying over the periodic boundary of the medium section. I. Analytical basis," Progress In Electromagnetics Research B, Vol. 91, 1-8, 2021.
doi:10.2528/PIERB20110105

2. Sirenko, Y., S. Sautbekov, N. Yashina, and K. Sirenko, "Diffraction radiation generated by a density-modulated electron beam flying over the periodic boundary of the medium section. II. Impact of true eigen waves," Progress In Electromagnetics Research B, Vol. 91, 9-17, 2021.
doi:10.2528/PIERB20110106

3. Cherenkov, P., "Visible radiation produced by electrons moving in a medium with velocities exceeding that of light," Physical Review, Vol. 52, 378-379, 1937.
doi:10.1103/PhysRev.52.378

4. Smith, S. and E. Purcell, "Visible light from localized surface charges moving across a grating," Physical Review, Vol. 92, No. 4, 1069-1073, 1953.
doi:10.1103/PhysRev.92.1069

5. Shestopalov, V. and Y. Sirenko, Dynamic Theory of Gratings, Naukova Dumka, Kiev, 1989 (in Russian).

6. Sirenko, Y. and S. Strom (eds), Modern Theory of Gratings. Resonant Scattering: Analysis Techniques and Phenomena, Springer, New York, 2010.

7. Shestopalov, V. and Y. Shestopalov, Spectral Theory and Excitation of Open Structures, The Institution of Electrical Engineers, London, 1996.
doi:10.1049/PBEW042E

8. Shestopalov, V., A. Kirilenko, S. Masalov, and Y. Sirenko, Resonance Wave Scattering. Vol. 1. Diffraction Gratings, Naukova Dumka, Kiev, 1986 (in Russian).

9. Sirenko, Y., "Analytical extension of diffraction problems and threshold effects in electromagnetics," Doklady Akademii Nauk Ukrainskoy SSR, Seriya A, No. 8, 65-68, 1986 (in Russian).

10. Sautbekov, S., K. Sirenko, Y. Sirenko, A. Poyedinchuk, N. Yashina, and A. Yevdokymov, "Smith-Purcell effect. Anomalously high level of outgoing wave excitation," Telecommunications and Radio Engineering, Vol. 77, No. 6, 469-487, 2018.
doi:10.1615/TelecomRadEng.v77.i6.10

11. Sirenko, Y., "A grating in the field of a compact monochromatic source," Electromagnetics, Vol. 13, No. 3, 255-272, 1993.
doi:10.1080/02726349308908349

12. Bolotovskiy, B. and G. Voskresenskiy, "Radiation of charged particles in periodic structures," Uspehi Fizicheskih Nauk, Vol. 94, No. 3, 378-416, 1968 (in Russian).
doi:10.3367/UFNr.0094.196803a.0378

13. Shestopalov, V., The Smith-Purcell Effect, Nova Science Publishes, New York, 1998.

14. Jelley, J., Cherenkov Radiation and Its Applications, Pergamon Press, London, 1958.

15. Frank, I., Vavilov-Cherenkov Radiation, Nauka, Moscow, 1988 (in Russian).

16. Kesar, A., "Smith-Purcell radiation from a charge moving above a grating of finite length and width," Physical Review Special Topics - Accelerators and Beams, Vol. 13, 022804-1-022804-8, 2010.

17. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2013.

18. Sautbekov, S., K. Sirenko, Y. Sirenko, and A. Yevdokimov, "Diffraction radiation phenomena: Physical analysis and applications," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 73-93, 2015.
doi:10.1109/MAP.2015.2470673

19. Granet, G., P. Melezhik, A. Poyedinchuk, S. Sautbekov, Y. Sirenko, and N. Yashina, "Resonances in reverse Vavilov-Cherenkov radiation produced by electron beam passage over periodic interface," International Journal of Antennas and Propagation, Vol. 2015, 10p., 2015.

20. Sirenko, Y., L. Velychko, and (eds), Electromagnetic Waves in Complex Systems: Selected Theoretical and Applied Problems, Springer, New York, 2016.

21. Melezhik, P., M. Ney, S. Sautbekov, K. Sirenko, Y. Sirenko, A. Vertiy, and N. Yashina, "Cherenkov radiation based antenna with the funnel-shaped directional pattern," Electromagnetics, Vol. 38, No. 1, 34-44, 2018.
doi:10.1080/02726343.2017.1406693

22. Sautbekov, S., K. Sirenko, Y. Sirenko, and A. Yevdokymov, "Diffraction antennas. Synthesis of radiating elements," Telecommunications and Radio Engineering, Vol. 77, No. 11, 925-943, 2018.
doi:10.1615/TelecomRadEng.v77.i11.10