Vol. 95

Latest Volume
All Volumes
All Issues
2022-06-10

Numerical Full Inversion of Two Dielectric Cylinders Upon a Metallic Plane: a First Step Toward Forest Parameters Retrieval from VHF to P-Band Radar Data

By Cyril Dahon, Alonso Cano, Mandiaye Fall, Guillaume Marrelec, and Gilles Chardon
Progress In Electromagnetics Research B, Vol. 95, 163-183, 2022
doi:10.2528/PIERB22020903

Abstract

Radar remote sensing applied to forest covers is a domain of interest for a few decades, particularly in forest monitoring for the global carbon cycle. In this paper, we use a numerical electromagnetic scattering model to investigate the full-inversion of a simple case where two dielectric cylinders are lying upon a metallic ground seen as a theoretical representation of only one tree trunk and one primary branch. The presented process performs cylinders 3D-locations estimation using an Orthogonal Matching Pursuit (OMP) algorithm, then scattering coefficient is retrieved for each cylinder and each scattering mechanism separately and finally the cylinders biophysical parameters (height, radius, complex permittivity) inversion using a Particle Swarm Optimisation (PSO) algorithm. This process is based on target subspace decomposition and applied to noisy simulated radar data.

Citation


Cyril Dahon, Alonso Cano, Mandiaye Fall, Guillaume Marrelec, and Gilles Chardon, "Numerical Full Inversion of Two Dielectric Cylinders Upon a Metallic Plane: a First Step Toward Forest Parameters Retrieval from VHF to P-Band Radar Data," Progress In Electromagnetics Research B, Vol. 95, 163-183, 2022.
doi:10.2528/PIERB22020903
http://www.jpier.org/PIERB/pier.php?paper=22020903

References


    1. Lu, D., "The potential and challenge of remote sensing-based biomass estimation," Int. Journal of Rem. Sens., Vol. 27, No. 7, 1297-1328, 2006.
    doi:10.1080/01431160500486732

    2. Le Toan, T., et al., "The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle," Remote Sensing of Environment, Vol. 115, No. 11, 2850-2860, 2011.
    doi:10.1016/j.rse.2011.03.020

    3. Cantalloube, H. and E. Colin Koeniger, "POLINSAR for FOPEN using flashlight mode images along circular trajectories," IEEE Int. Geosc. and Rem. Sens. Symposium, 1139-1142, 2007.

    4. Davis, M., Foliage Penetration Radar: Detection and Characterization of Objects under Trees, Scitech Publishinc Inc., New York, 2011.
    doi:10.1049/SBRA007E

    5. Lee, J. S. and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications, CRC Press, 2009.

    6. Treuhaft, R. N. and P. R. Siqueira, "Vertical structure of vegetated land surfaces from interferometric and polarimetric radar," Radio Science, Vol. 35, No. 1, 141-177, 2000.
    doi:10.1029/1999RS900108

    7. Treuhaft, R. N. and P. R. Siqueira, "The calculated performance of forest structure and biomass estimates from interferometric radar," Waves in Random Media, Vol. 14, No. 2, S345-S358, 2004.
    doi:10.1088/0959-7174/14/2/013

    8. Treuhaft, R. N., B. E. Law, and G. P. Asner, BioScience, Vol. 54, No. 6, 561-571, 2004.

    9. Li, Z., H. Wang, T. Su, and Z. Bao, "Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems," IEEE Geos. and Rem. Sens. Letters, Vol. 2, No. 1, 82-86, 2005.
    doi:10.1109/LGRS.2004.840610

    10. Huang, Y., L. Ferro-Famil, and C. Lardeux, "Polarimetric SAR tomography of tropical forests at P-band," IEEE Int. Geosc. and Rem. Sens. Symposium, 1373-1376, 2011.

    11. Minh, D. H. T., et al., "SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana," Remote Sensing of Environment, Vol. 175, 138-147, 2016.
    doi:10.1016/j.rse.2015.12.037

    12. Pardini, M., V. Cazcarra-Bes, and K. Papathanassiou, "TomoSAR mapping of 3D forest structure: Contributions of L-band configurations," Remote Sens., Vol. 13, No. 12, 2255, 2021.
    doi:10.3390/rs13122255

    13. Garestier, F., P. C. Dubois-Fernandez, D. Guyon, and T. Le Toan, "Forest biophysical parameter estimation using L-and P-band polarimetric SAR data," IEEE Trans. on Geosc. Rem. Sens., Vol. 47, No. 10, 3379-3388, 2009.
    doi:10.1109/TGRS.2009.2022947

    14. European Space Agency website, Biomass Mission, https://www.esa.int/Applications/Observingthe Earth/The Living Planet Programme/Earth Explorers/Biomass, 2022.

    15. Mermoz, S., M. Réjou-Méchain, L. Villard, T. Le Toan, V. Rossi, and S. Gourlet-Fleury, "Decrease of L-band SAR backscatter with biomass of dense forests," Remote Sensing of Environment, Vol. 159, 307-317, 2015.
    doi:10.1016/j.rse.2014.12.019

    16. Ulaby, F. T., K. Sarabandi, K. Mcdonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," Int. Journal of Rem. Sens., Vol. 11, No. 7, 1223-1253, 1990.
    doi:10.1080/01431169008955090

    17. Thirion, L., E. Colin Koeniger, and C. Dahon, "Capabilities of a forest coherent scattering model applied to radiometry, interferometry, and polarimetry at P- and L-band," IEEE Trans. on Geosc. Rem. Sens., Vol. 44, No. 4, 849-862, 2006.
    doi:10.1109/TGRS.2005.862523

    18. Bellez, S., C. Dahon, and H. Roussel, "Analysis of the main scattering mechanisms in forested areas: An integral representation approach for monostatic radar configurations," IEEE Trans. on Geosc. Rem. Sens., Vol. 47, No. 12, 4153-4166, 2009.
    doi:10.1109/TGRS.2009.2023663

    19. Bellez, S., H. Roussel, C. Dahon, and J. M. Geffrin, "A rigorous forest scattering model validation through comparison with indoor bistatic scattering measurements," Progress In Electromagnetics Research B, Vol. 33, No. 7, 1-19, 2011.
    doi:10.2528/PIERB11063009

    20. Bellez, S., H. Roussel, C. Dahon, J. C. Castelli, and A. Cheraly, "Full polarimetric bistatic radar imaging experiments on sets of dielectric cylinders above a conductive circular plate," IEEE Trans. on Geosc. Rem. Sens., Vol. 51, No. 7, 4164-4176, 2013.
    doi:10.1109/TGRS.2012.2227264

    21. Fenni, I., H. Roussel, M. Darces, and R. Mittra, "Fast analysis of large 3-D dielectric scattering problems arising in remote sensing of forest areas using the CBFM," IEEE Trans. on Ant. and Prop., Vol. 62, No. 8, 4282-4291, 2014.
    doi:10.1109/TAP.2014.2324554

    22. Fall, M., H. Roussel, C. Dahon, M. Casaletti, I. Fenni, and R. Mittra, "A high performance MPI implementation of numerical modeling of electromagnetic scattering from forest environment," IEEE APURSI, 2011-2012, 2016.

    23. Sarabandi, K., Electromagnetic Scattering from Vegetation Canopies, Michigan University Press, 1989.

    24. Ulaby, F. T., Radar Polarimetry for Geoscience Applications, Artech House, Inc., 1970.

    25. Haupt, R. L. and S. Ellen Haupt, Practical Genetic Algorithms, Wiley Online Library, 2004.

    26. Karam, M. A. and A. K. Fung, "Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation," Int. Journal of Rem. Sens., Vol. 9, No. 6, 1109-1134, 1988.
    doi:10.1080/01431168808954918