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Abstract—Asymptotic techniques have been successfully applied to
compute electromagnetic wave radiation in various high-frequency
engineering domains. Recent approaches based on Gaussian beams
for tracking fields may overcome some problems inherent to the ray
methods such as caustics. The efficiency of these methods is based
on the ability to expand surface fields into a superposition of Gaussian
beams. However, some difficulties may arise when the surface is curved.
In this paper, we propose a new efficient way to expand fields on a
curved surface into Gaussian beams. For this purpose, a new beam
formulation called Conformal Gaussian Beam (CGB) is used. The
CGBs have been developed to overcome the limitation of the expansion
into paraxial Gaussian Beams. The analytical Plane-Wave Spectrum
and far-field of a CGB are derived and compared with numerical
calculations. A brief parameter analysis of the CGBs is realised.

1. INTRODUCTION

For several years, high-frequency techniques have been successfully
applied to describe electromagnetic wave radiation in various domains:
antenna analysis, propagation, Radar Cross-Section computation,
compatibility issues, etc. As the size of the objects under consideration
tends to be large according to the wavelength, rigorous approaches
such as the finite-element method (FEM) or the method of moments
(MoM) become computer time and resource prohibitive. In contrast,
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at sufficiently high-frequency, the electromagnetic phenomena such
as radiation, propagation and diffraction, exhibit localized behavior
properties [1]. As the asymptotic methods use a local description of
EM fields, such as the ray techniques, their efficiency increases with
the frequency.

Ray techniques like the shooting or bouncing ray methods
represent the fields by a set of Geometrical Optics (GO) ray tubes
for which the propagation, reflection and transmission obey the
generalized Fermat’s principle and the power conservation. However,
some difficulties may arise with some complex situations, such as
caustics. Moreover, the number of rays and the computation time
may increase for complex cases such as radomes.

Current based approaches such as Physical Optics (PO) and
Physical Theories of Diffraction (PTD) do not rely on the concept
of ray and then can circumvent ray-based problems like caustics.
However, the asymptotic evaluation of radiating fields by the PO/PTD
currents needs numerical integration which can be also time and
resources consuming. Many directions and techniques such as hybrid
methods exist in order to deal with these theoretical and practical
challenges [2, 3].

Some approaches may use different basis functions involving
Gaussian Beams (GBs) for tracking fields in complex environments [4–
9]. Various formulations based on Gaussian Beams are reviewed
in [10]. The Gaussian Beam set ables one to reduce the number of
required ray tubes and avoids caustics problems. Moreover, asymptotic
methods allow to express propagation and transformation of the GBs
by interfaces in closed form expressions. Gaussian Beams Tracking
(GBT) methods are based on the ability to expand any source fields
into a summation of Gaussian beams [11, 12]. During the last years,
GBT has been successfully applied to the computation of the fields
scattered by mono and multilayer dielectric radomes [13, 8]. Recently,
it has been applied to the Airbus A380 front antenna radome, reducing
computation time by a factor 70 in contrast with a classic Plane-Wave
Spectrum (PWS) based method [14].

The source fields expansion into a superposition of GBs can be
performed through different techniques. A fully rigourous method such
as the Gabor frame-based expansion can be used for fields defined over
a plane [11] or extended to cylindrical surfaces [15]. However, in some
situations, fields are only known over a curved surface. This case occurs
for example in radome engineering.

Point matching or minimum least square error can be used to
express the fields on a surface as a superposition of equally spaced
GBs [6]. However, this technique fails for a heavy curved surface. In
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order to treat a more general class of curved surfaces, [16] proposed
to use a Gabor expansion with respect to the curvilinear coordinate
of a regular interface in a two-dimensional case. This expansion
requires a new kind of Gaussian beams, named Conformal Gaussian
Beams (CGB) [17]. The basic idea of the CGB is still to expand non-
local fields into a summation of localized fields who depends on the
local curvature of the surface. In this paper, we use a point matching
expansion of equivalent currents on a 3D curved surface into some
localized Gaussian amplitude currents. The field radiated by each of
these localized currents can be expressed through a closed-form by
applying standard asymptotic techniques.

In Section 2, we present the principal characteristics of the CGBs
extended to the three-dimensional case. In Section 3, we derive the
analytical Plane Wave Spectrum (PWS) of a CGB. A comparison with
a numerical evaluation of the PWS is presented. The PWS of a CGB
will able one to express the interaction between fields and dielectric
interfaces as done in [13]. In Section 4 we derive the analytical far-
field of a CGB. A numerical comparison with a traditional Kottler
integration is realized for a sharp surface to demonstrate the CGB
validity and to exhibit their main properties. An exp(+jωt) time
dependence for the electromagnetic fields is assumed and suppressed
throughout in this paper.

2. CONFORMAL GAUSSIAN BEAM

The expansion of a source field into a superposition of GBs can be
performed on some moderate curved surface as illustrated on Fig. 1(a)
In this case, the angle between the main propagation direction of the
local equivalent field and the normal vector direction on the local
surface is small. The local assumption is valid and the beams’s half-
widths (W0) on the surface are small. On the contrary, for a heavy
curved surface (Fig. 1(b)), the local assumption is not valid anymore:
the beams widths may be too large leading to an incorrect expansion
and to a wrong evaluation of the radiated fields.

In order to circumvent this problem, one needs to keep a finite
size beam on the surface and to have the possibility to specify a
main radiation direction of the beams. Conformal Gaussian Beams
(CGB) combine both properties. In this section, we briefly present
an extension of the CGB to the three-dimensional case. More details
about CGB can be found in [13, 17].

We first assume that the electric and magnetic fields are known
on a curved surface S. Equivalent electric J and magnetic M currents
are then given by the Equivalence Theorem on S. As presented in [13],
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(a) (b)

Figure 1. Illustration of the expansion of a field on a curved surface
into a superposition of GBs. (a) Moderate curvature, (b) Strong
curvature.

the basic idea is to expand the surface-currents J,M using Gaussian
amplitude currents:
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∑
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where k is the wave number and Qf the complex curvature matrix
of the elementary currents, analogue to that of conventional elliptical
Gaussian Beam field formulation [5].
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The eigenvalues of this matrix are related to the Gaussian current
waists W0x,n , W0y,n defined on the principal curvature axes by:
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n) =

1
2

(
qf
11;n + qf

22;n

)

±1
2

√(
qf
11;n + qf

22;n

)2
− 4

(
qf
11;nq

f
22;n − qf

12;n

2
)

(5)

(βx;n, βy;n) are the linear phase terms which define the main
propagation direction of the beam fields. The fields radiated by
those elementary Gaussian currents are named Conformal Gaussian
Beam (CGB).

The general geometry for the problem is shown on Fig. 2. Let O
be the center of the absolute frame {êx, êy, êz}. As in the following we
consider only one elementary CGB for the sake of clarity, subscripts n
have been suppressed. The z-axis is normal to the curved surface
S on O. Let r = xêx + yêy + zêz be an observation point and
r′ = x′êx + y′êy + z′êz a point on S. Unprimed characters denote
the observation points and primed characters denote points on the
surface S.

(a) (b)

Figure 2. Geometry of the problem. The surface S is approximated
at O by a paraboloid Σ. An elementary current JCGB or MCGB is
defined on O. (a) General view, (b) (O, êx, êz) plane cut.

It is assumed that the surface S at O can be approximated locally
by a paraboloid Σ. The radius of curvature of the quadric are that of
the original surface at O. Therefore, z′ can approximated by [5]:

z′ ≈ −1
2

(
x′

y′

)t

QΣ

(
x′

y′

)
(6)
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where QΣ stands for the curvature matrix which eigenvalues are the
inverse of the principal local radii of curvature Rx and Ry of the surface
Σ in O:

QΣ =
(

qΣ
11 qΣ

12

qΣ
12 qΣ

22

)
(7)

Elementary electric and magnetic Gaussian currents JCGB,MCGB

are defined on Σ by:

JCGB(x′, y′) = êJ(x′, y′)u(x′, y′) (8)

MCGB(x′, y′) = êM (x′, y′)u(x′, y′) (9)

Using the Franz’s integrals [18], the radiated fields from electric
JCGB and magnetic MCGB elementary currents can be expressed as
electric Er

J ,H
r
J and magnetic Er

M ,Hr
M CGB by:

Er
J(r) =

Z0

jk
∇ × ∇ × AJ(r) (10a)

Er
M (r) = −∇ × AM (r) (10b)

Hr
J(r) = ∇ × AJ(r) (11a)

Hr
M (r) =

1
jkZ0

∇ × ∇ × AM (r) (11b)

The differential operators act only on the observation point dependant
terms (r). Z0 =

√
µ0

ε0
is the free-space impedance and:

AM (r) =
∫∫

Σ
MCGB(x′, y′)G(r, r′) dS′ (12)

AJ(r) =
∫∫

Σ
JCGB(x′, y′)G(r, r′) dS′ (13)

G(r, r′) =
e−jk‖r−r′‖

4π‖r − r′‖ (14)

To illustrate the aspect of a CGB, we represent on Fig. 3
the numerical computation of the radiation of an elementary two-
dimensional electric current JCGB = êJ(x′, y′)u(x′, y′) defined at O
by a Kottler current integral [16]. As any conventional current on a
surface, elementary currents radiate toward both sides of the surface Σ.
However, the radiation patterns on each side are not the same because
of the curvature of the surface.
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Figure 3. Example of electric field radiated by a single two-
dimensional elementary electric current JCGB defined at 0 with W0x =
2λ, Rx = 10λ and βx = k sin(45◦). The elementary current radiates in
two main directions which are given by the value of the βx parameter.

On the contrary of a classical Gaussian beam for which the source
is located at infinity, the source of a CGB is localized on the surface.
Moreover, a CGB has two main propagation directions and depends
on the local properties of the surface.

3. CGB PLANE-WAVE SPECTRUM

3.1. Plane-wave Spectrum Derivation

In this section, we derive the asymptotic expression of the Plane-Wave
Spectrums (PWS) Ẽ, H̃ of a CGB, which are defined by:

Er(r) =
1

4π2

∫∫ +∞

−∞
Ẽ(kx, ky)e−j(kxx+kyy+kzz)dkx dky (15)

Hr(r) =
1

4π2

∫∫ +∞

−∞
H̃(kx, ky)e−j(kxx+kyy+kzz)dkx dky (16)

In order to express these spectrum, the spatial integrals (12)
and (13) issued from Franz formulations can be transformed into
spatial and spectral integrals by expanding the free-space Green
function G(r, r′) into its Plane-Wave Spectrum using the Weyl
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expansion [19, p.481]:

G(r, r′) =
1

8jπ2

∫∫ +∞

−∞
e−j(kx(x−x′)+ky(y−y′)+kz |z−z′|) dkx dky

kz
(17)
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x + k2
y

−j
√
k2

x + k2
y − k2, if k2 < k2

x + k2
y

(18)

For complex values of kx and ky, the convergence of the integral is
guaranteed by imposing the square root condition Im[kz] < 0. Pole
singularities may be avoided by introducing small losses (Im[k] = 0−),
which are eventually removed [19]. Later on, we assume that z > z′,
and we remove the modulus sign on z − z′ in (17). The procedure is
the same in far zone for z < z′. Substituting (17) into the integral
expression (12) and (13) and interchanging the order of spatial and
spectral integration [20, 21], one can evaluate the spatial integral by
the method of the saddle point and then express the fields as a spectral
integral. Details of the calculus can be found on the Appendix A.
Finally, we deduce by identification from the Equations (15) and (16)
the analytical Plane-Wave Spectrums of a Conformal Gaussian Beam:

Ẽ(kx, ky) =
[
Z0

k

(
k × k × êJ

)
+

(
k × êM

)] γ(kx, ky)
2kz

(19)

H̃(kx, ky) =
[(
−k × êJ

)
+

1
Z0k

(
k × k × êM

)] γ(kx, ky)
2kz

(20)

where the expression of γ(kx, ky) is given in appendix. One can note
that the derivation does not depend on a paraxial approximation.
Therefore, the analytical Plane-Wave Spectrum of a CGB can be used
beyond the paraxial limitation which relates to some conventional GBs
formulations.

3.2. Numerical Results

In order to validate preceding results, a comparison between the
analytical and a numerical computation of the PWS has been
performed. First, the fields radiated by an elementary electric current
JCGB are evaluated on a plane surface Λ near the radiating surface
Σ by a numerical current integration. Then, the PWS of the field
on this plane surface is computed and compared with our analytical
formulation (19). The geometry of the test case is depicted on Fig. 4.
Results are presented on Fig. 5 and Fig. 6.
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(a) (b)

Figure 4. Geometry for the numerical validation of the PWS of a
CGB. The plane surface Λ is upper the curved surface S where an
elementary electric current JCGB is defined in O. The radiated field
on Λ is computed by a numerical Kottler radiation integration. Then,
the PWS of the fields is computed on the plane Λ and compared to
the analytical expression (19). (a) General view, (b) êx, êz plane cut.

4. CGB FAR-FIELD

4.1. Far-Field Derivation

We derive here the asymptotic approximation for large value of kr of
a CGB (r = ‖r‖) for the half-plane z > 0. For the sake of brevity, the
development is only performed for the Er field. The same results can
be obtained for the magnetic field. We rewrite Equation (15) into the
following general compact form

Er(r) =
1

4π2

∫∫ +∞

−∞
Ẽ(kx, ky)ejkrΨ(k) dkx dky (21)

with

Ψ(k) = − 1
kr

k · r = − 1
kr

(kxx + kyy + kzz) (22)

The approximation may be obtained by the application of stationary
phase method for double integrals [19], and one obtains:

Er(r, θ, φ) ≈ jk

2π
cos θ

e−jkr

r
Ẽ(k sin θ cosφ, k sin θ sinφ)

−π

2
< θ <

π

2
,∀φ ∈ [0, π]

(23)

where (r, θ, φ) are the spherical coordinates with origin O.
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4.2. Numerical Results

The far-field expression (23) is compared to a numerical computation
based on the Kottler integrals for the electric field radiated by an
elementary current JCGB = êJ(x′, y′)u(x′, y′). The unit vector
êJ(x′, y′) is defined as êJ(0, 0) = êy. JCGB is defined on the local

Figure 5. Comparisons between analytical Plane Wave Spectrum
(PWS) of a Conformal Gaussian Beam with a numerical PWS
computation of the field calculated on the plane Λ. We represent here
the three components Ẽx, Ẽy, Ẽz of the PWS. Plain lines symbolize
the cuts represented on Fig. 6. JCGB = êJ(x′, y′)u(x′, y′), MCGB = 0,
W0 = 2λ, Rx = Ry = 10λ, δz = 1λ, βx = βy = 0. Unit-vector êJ is
defined as êJ(0, 0) = êy.
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Figure 6. Profiles of the three components of the PWS of a CGB.
JCGB = êJ(x′, y′)u(x′, y′), MCGB = 0, W0 = 2λ, Rx = Ry = 10λ,
δz = 1λ, βx = βy = 0.

system (O, x, y, z), as represented on Fig. 2. The fields are evaluated
at large distance R. Results are shown on Fig. 7. Due to the fact
that we used only one electric current for the sake of simplicity, one
can note there are two beams radiated above and below the surface, as
on the Fig. 3. However, in applications involving dielectric interfaces,
currents on the surface are both electric and magnetic in vertu of the
Equivalence theorem. Then, because of mutual destructive interference
between fields radiated by both type of currents, there is only one
beam radiated. In the next paragraphs, a brief parameter study of a
CGB is realised, in order to show its principal properties. For each of
these cases, numerical comparisons with a numerical Kottler current
radiation integral show the same accuracy as seen on Fig. 7.

We define the CGB circular: W0x = W0y = W0. One elementary
electric current JCGB is considered for all the examples, defined on
O and oriented on the êJ(0, 0) = êy axis. When the surface is a
perfect plane (Rx = Ry = ∞), the beam size tends to decrease
as the waist size increases. This result confirms that on a plane
surface, elementary currents radiate like the currents which would be
induced by a conventional Gaussian beam. One effect of the surface
curvature is visible on Fig. 8 where the principal radii of curvature are
Rx = Ry = 10λ and W0 varies from 1λ to 10λ. CGB are not anymore
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Figure 7. Electric far-field of a CGB compared to a Kottler numerical
radiation integral (Reference). The geometry of the problem is
depicted on Fig. 2. JCGB = êJ(x′, y′)u(x′, y′), W0 = 2λ, Rx = Ry =
10λ and βx = k sin(45◦), βy = 0.
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Figure 8. Normalized electric far-fields comparison of a CGB for
different values of W0 on a curved surface (Rx = Ry = 10λ) for
W0 = 1, 2, 5 and 10λ. βx = βy = 0.

close to conventional GB, because the size of the beam raises when the
waist increases.

On Fig. 9, we have represented some normalized E-field for
different values of the principal radii of curvature Rx = Ry = ∞,
30, 10 and 5λ while W0 is set to 2λ. As the curvature of the surface
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increases, the size of the beam increases also.
On Fig. 10, we have represented some normalized E-field for

different values of the linear phase term βx corresponding to a main
propagation direction angle varying from 0◦ to 85◦ (βy = 0). The
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Figure 9. Normalized electric far-fields comparison of a CGB for
different values of the principal radii of curvature (Rx, Ry) of the
surface for Rx = Ry = ∞ (perfect plane), 30, 10 and 5λ with W0 = 2λ.
βx = βy = 0.
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Figure 10. Normalized electric far-fields comparison of a CGB
for different values of the linear phase term (βx, βy) for βx =
k sin(0◦), k sin(20◦), k sin(45◦) and k sin(85◦), βy = 0. Rx = Ry = 10λ
and W0 = 2λ.
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curvature radii are set to 10λ and W0 to 2λ. One notes that both
radiated beams tends to form a unique beam as the angle from the êz

axis increases.

5. CONCLUSION

The Conformal Gaussian Beams (CGB) have been presented. These
new beams are radiated by elementary Gaussian currents on a curved
surface. Using the Franz field integral and the Weyl expansion
of the free-space Green function, a closed form of the plane-wave
spectrum (PWS) of a CGB has been obtained. A comparison between
a numerical evaluation of the PWS and the analytical form has been
made. The far-field of a CGB has been expressed and compared with a
classical numerical current integration method. A very good agreement
is observed. A brief parameter study has been realised in order to
exhibit the main properties of the CGB.

A multi-beams summation can been applied in three-dimensional
problems to expand electric and magnetic currents on a curved
interface into elementary Gaussian currents as done in the two-
dimensional case [17]. With the analytical plane-wave spectrum of
a CGB and using the Fresnel coefficients, a closed-form calculation of
the reflected and transmitted fields by a mono or multi dielectric layers
curved interface is possible as realised in [13]. These will be presented
in future communications.

APPENDIX A. DERIVATION OF THE PWS OF A CGB

Substituting Equation (17) into Equations (12) and (13) and
interchanging the order of spatial and spectral integration, one obtains:

AM (r) =
1

8jπ2

∫∫ +∞

−∞

UM (kx, ky)
kz

e−j(kxx+kyy+kzz) dkx dky

AJ(r) =
1

8jπ2

∫∫ +∞

−∞

UJ(kx, ky)
kz

e−j(kxx+kxy+kzz) dkx dky

with

UM (kx, ky) =
∫∫

Σ
MCGB(x′, y′)e+j(kxx′+kyy′+kzz′) dS′ (A1)

UJ(kx, ky) =
∫∫

Σ
JCGB(x′, y′)e+j(kxx′+kyy′+kzz′) dS′ (A2)
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We now evaluate the last two integrals. By substituting JCGB and
MCGB by their expressions (8) and (9), one obtains:

UM (kx, ky) =
∫∫

Σ
êM (x′, y′)u(x′, y′)e+j(kxx′+kyy′+kzz′) dS′ (A3)

UJ(kx, ky) =
∫∫

Σ
êJ(x′, y′)u(x′, y′)e+j(kxx′+kyy′+kzz′) dS′ (A4)

where the surface element dS′ for the quadric surface Σ (6) is given for
cartesian coordinates by,

dS′ =

√
1 +

(
∂z′

∂x′

)2

+
(
∂z′

∂y′

)2

dx′dy′ =
√
d(x′, y′)dx′dy′ (A5)

Using (3) and (6), we put those integrals under a general reduced form:

Ui(kx, ky) =
∫∫ +∞

−∞
ψi(x′, y′)e−kΦ(x′,y′) dx′ dy′ (A6)

where the subscript i denotes either M or J , and

ψi(x′, y′) = êi(x′, y′)
√
d(x′, y′) (A7)

Φ(x′, y′) =
j

2

(
x′

y′

)t

Q

(
x′

y′

)
− j

k

(
x′

y′

)t

·
(
kx − βx

ky − βy

)
(A8)

qmn = qf
mn + kz

k q
Σ
mn represents the elements of the matrix Q.

Integral (A6) has an appropriate form to be evaluated with the saddle-
point method for complex double integral [22]:

Ui(kx, ky) � êi(x′s, y
′
s)γ(kx, ky) (A9)

where (x′s, y
′
s) are the coordinates of the saddle point given by(

x′s
y′s

)
=

Q−1

k

(
kx − βx

ky − βy

)
(A10)

and

γ(kx, ky)=
2π
k

√
d(x′s, y′s) (−det Q)−

1
2

exp

[
j

2k

(
kx − βx

ky − βy

)t

Q−1

(
kx − βx

ky − βy

)]
(A11)
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In Equations (10) and (11), the curl operators can operate inside
the spectral integral because the derivative operates only on the
observation point (r) dependant parameters, merely the exp(−jk · r)
term. One obtains,

Er
J(r)=

1
4π2

∫∫ +∞

−∞

Z0

k

(
k×k × êJ

) γ(kx, ky)
2kz

e−jk·rdkx dky (A12a)

Er
M (r)=

1
4π2

∫∫ +∞

−∞

(
k×êM

) γ(kx, ky)
2kz

e−jk·rdkx dky (A12b)

Hr
J(r)=

1
4π2

∫∫ +∞

−∞

(
−k×êJ

) γ(kx, ky)
2kz

e−jk·rdkx dky (A13a)

Hr
M (r)=

1
4π2

∫∫ +∞

−∞

1
Z0k

(
k×k × êM

) γ(kx, ky)
2kz

e−jk·rdkx dky (A13b)

One recognizes in Equations (A12) and (A13) the Plane-Wave
Spectrums of the radiated fields Er and Hr as defined by
Equations (15) and (16).
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