Progress
In
Electromagnetics
Research B
CONTENTS

MODELING THE DYNAMIC ELECTROMECHANICAL SUSPENSION BEHAVIOR OF AN ELECTRODYNAMIC EDDY CURRENT MAGLEV DEVICE

Nirmal Paudel and Jonathan Z. Bird

1. Introduction ... 1
2. Field Based Modeling 3
3. Steady State Model ... 6
4. Transient Eddy Current Model for an Arbitrarily Changing Source ... 10
5. Halbach Rotor Source Field 13
6. Two Degree of Freedom Vehicle Simulation 15
7. Stiffness and Damping Analysis 20
8. Conclusions .. 25
Appendix A ... 26

BRAIN TUMOR TISSUE CATEGORIZATION IN 3D MAGNETIC RESONANCE IMAGES USING IMPROVED PSO FOR EXTREME LEARNING MACHINE

Baladhandapani Arunadevi and Subramaniam N. Deepa

1. Introduction .. 32
2. Volumetric Texture Analysis on 3D MRI Images 33
3. Experiment Results .. 43
4. Discussion ... 45
5. Conclusion ... 50

DESIGN OF DUAL POLARIZED ASYMMETRICALLY FED SLOTTED RECTANGULAR PRINTED MONOPOLE ANTENNA

Raghupatruni V. S. Ram Krishna and Raj Kumar

1. Introduction .. 55
2. Antenna Structure ... 57
3. Simulated and Measured Results 59
4. Theoretical Analysis 62
5. Parametric Study .. 67
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Radiation Patterns, Gain and Efficiency</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>A THEORY OF MAGNETIC ANGLE SENSORS WITH HALL PLATES AND WITHOUT FLUXGUIDES</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>The Principle of Axial Angle Sensors</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>Magnets for Axial Angle Sensors</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>Errors due to Assembly Tolerances</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>Optimum Magnet for Axial Angle Sensors</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>Axial Versus Perpendicular Sensors</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>99</td>
</tr>
<tr>
<td>Appendix A</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Appendix B</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Appendix C</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Appendix D</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Appendix E</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A TEMPORAL MULTI-FREQUENCY ENCODING TECHNIQUE FOR CHIPLESS RFID BASED ON C-SECTIONS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>Operating Principle</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>Chipless RFID System Design</td>
<td>112</td>
</tr>
<tr>
<td>4</td>
<td>Time Domain Measurement Techniques</td>
<td>117</td>
</tr>
<tr>
<td>5</td>
<td>Results and Discussion</td>
<td>118</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion & Perspectives</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>INVESTIGATION OF NEAR FIELD INDUCTIVE COMMUNICATION SYSTEM MODELS, CHANNELS AND EXPERIMENTS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>129</td>
</tr>
<tr>
<td>2</td>
<td>Related Work</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Magnetic Induction Communications</td>
<td>133</td>
</tr>
<tr>
<td>4</td>
<td>MI Communication Channels</td>
<td>136</td>
</tr>
<tr>
<td>Title</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>ON THE STUDY OF EMPIRICAL PATH LOSS MODELS FOR ACCURATE PREDICTION OF TV SIGNAL FOR SECONDARY USERS</td>
<td>156-172</td>
<td></td>
</tr>
<tr>
<td>FORMULATION OF MULTIWIRE MAGNETIC TRANSMISSION-LINE THEORY</td>
<td>177-191</td>
<td></td>
</tr>
<tr>
<td>THE SUBGRID MODELING FOR MAXWELL’S EQUATIONS WITH MULTISCALE ISOTROPIC RANDOM CONDUCTIVITY AND PERMITTIVITY</td>
<td>197-210</td>
<td></td>
</tr>
</tbody>
</table>
DATA-DRIVEN POLINSAR UNSUPERVISED
CLASSIFICATION USING ADAPTIVE MODEL-BASED
DECOMPOSITION AND SHANNON ENTROPY
CHARACTERIZATION

Hui Song, Wen Yang, Xin Xu, and Mingsheng Liao

1 Introduction ... 216
2 Theory .. 217
3 Proposed Algorithm .. 221
4 Experimental Results .. 225
5 Conclusion and Discussion 231

ELECTROMAGNETIC FIELDS EXCITATION BY A
MULTIELEMENT VIBRATOR-SLOT STRUCTURES IN
COUPLED ELECTRODYNAMICS VOLUMES

Dmitriy Y. Penkin, Sergey L. Berdnik, Victor A. Katrich
Mikhail V. Nesterenko and Victor I. Kijko

1 Introduction ... 235
2 Problem Formulation and Initial Integral Equations 236
3 Integral Equations for Electric and Magnetic Currents in
Thin Vibrators and Narrow Slots 240
4 Multielement Vibrator-slot Structure in a Rectangular
Waveguide ... 243
5 Numerical Results ... 247
6 Conclusion ... 250

WIRE TROUBLESHOOTING AND DIAGNOSIS:
REVIEW AND PERSPECTIVES

Fabrice Auzanneau

1 Introduction ... 253
2 Context .. 254
3 Diagnosis Methods and Reflectometry 257
4 Modeling and Simulation 262
5 Diagnosis Strategy ... 268
6 Perspectives ... 270
Appendix A. Reflection Coefficient of a Defective Line
Terminated by short and Open Circuits 272
PENALTY FUNCTION SOLUTION TO PATTERN SYNTHESIS OF ANTENNA ARRAY BY A DESCENT ALGORITHM

Tiaojun Zeng and Quanyuan Feng

1 Introduction .. 281
2 Cost Function Formulation 282
3 New Descent Algorithm 285
4 Simulation Results 289
5 Conclusion ... 292
Appendix A. The Derivation of Gradient and Hessian Matrix of Cost Function 292

SIDELOBES REDUCTION USING SYNTHESIS OF SOME NLFM LAWS

Iulian C. Vizitiu

1 Introduction .. 301
2 A Synthetic Review of the Stationary Phase Principle 303
3 Synthesis of Some NLFM Laws Using the Stationary Phase Principle .. 305
4 Experimental Results 308
5 Conclusions ... 316

ASYMMETRICAL EFFECTS OF BI-ANISOTROPIC SUBSTRATE-SUPERSTRATE SANDWICH STRUCTURE ON PATCH RESONATOR

Chemseddine Zebiri, Mohamed Lashab, and Fatiha Benabdellaziz

1 Introduction .. 319
2 Theory .. 321
3 Results .. 325
4 Conclusion ... 331

GPR ESTIMATION OF THE GEOMETRICAL FEATURES OF BURIED METALLIC TARGETS IN TESTING CONDITIONS

Francesco Soldovieri, Ilaria Catapano, Pier Matteo Barone
Sebastian E. Lauro, Elisabetta Mattei, Elena Pettinelli, Guido Valerio Davide Comite and Alessandro Galli

1 Introduction and Background 340
2 GPR Experimental Setup: Results for Scattering 343
3 GPR Simulation Setup: Results for Scattering 345
4 GPR Inverse Problem Via a Microwave Tomographic Approach 349
5 Results for the Scatterers Through the Inversion Approach .. 352
6 Conclusion .. 357

A UNIT CELL APPROACH TO MODEL AND CHARACTERIZE THE METAL POWDERS AND METAL-DIELECTRIC COMPOSITES AT MICROWAVE FREQUENCIES

Tannu Gupta, Mohammad J. Akhtar, and Animesh Biswas

1 Introduction .. 364
2 The Effective Constitutive Properties and their Estimation .. 367
3 Numerical Modeling and Simulation 369
4 Results and Discussion 371
5 Conclusion .. 383

AN IMPROVED ANALYTICAL MODEL FOR SALIENT POLE SYNCHRONOUS MACHINES UNDER GENERAL ECCENTRICITY FAULT

Hamidreza Akbari

1 Introduction .. 389
2 Eccentricity Modeling 391
3 Analytical Equations of Inductances for General Eccentricity 392
4 Computation of Inductances 399
5 Experimental Results 402
6 Conclusions .. 404
Appendix A .. 406
Appendix B .. 406
Appendix C .. 407

AN EMI INVERSING PROBLEM FOR LANDMINE CHARACTERIZATION BASED ON IMPROVED PARTICLE SWARM OPTIMIZATION AND FINITE ELEMENT ANALYSIS

Yacine Matriche, Abdelhalim Zaoui, Mehdi Abdellah and Mouloud Feliachi

1 Introduction .. 411
2 Overview of EMI System 413
3 System Modeling .. 415
GEOMETRICALLY LIT REGION ANALYSIS OF THE SINGLE-RAY DEBYE TERMS FOR THE TRANSMISSION OF A HIGH FREQUENCY PLANE WAVE INTO A DOUBLE-NEGATIVE CYLINDER BY THE MODIFIED WATSON TRANSFORMATION AND DEBYE SERIES EXPANSION

Saffet G. Şen

1 Introduction ... 429
2 Problem Description ... 430
3 Single-ray Debye Terms 432
4 Numerical Results and Discussion 441
5 Conclusion .. 453