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Scattered Field in Random Dielectric Inhomogeneous Media:
A Random Resolvent Approach

Ellaheh Barzegar1, *, Stef van Eijndhoven2, and Martijn van Beurden1

Abstract—In modeling electromagnetic phenomena randomness of the propagation medium and of
the dielectric object should be taken up. The usually applied Monte-Carlo based methods reveal
true characteristics of the random electromagnetic field at the expense of large computation time
and computer memory. Use of expansion based methods and their resulting algorithm is an efficient
alternative. In this paper the focus is on characteristics of electromagnetic fields that satisfy integral
equations where the integral kernel has a random component, typically, electromagnetic fields that
describe scattering due to dielectric objects with an inhomogeneous random contrast field. The
assumption is that the contrast is affinely related to a random variable. The integral equation is of
second kind Fredholm type so that its solutions are determined by the resolvent, a random operator
field. The key idea is to expand that operator field with respect to orthogonal polynomials defined by
the probability measure on the underlying sample space and to derive the properties of the solution
from that expansion. Two types of illustration are presented: an inhomogeneous dielectric slab and a
2D dielectric grating with 1D periodicity.

1. INTRODUCTION

In many engineering applications, natural variations and randomness of dielectric structures and
random inhomogeneous media need to be taken up in electromagnetic (EM) models. When exposed to
an incident EM wave, such structures and media cause random scattering. For a one-dimensional
medium the scattering effect is quantified by random reflection and transmission coefficients. For
multidimensional scattering the random power scattered by the object is a quantifying concept. In the
context of applications, the two main questions are: (1) Given a measured reflected or transmitted EM-
wave, what are the dielectric properties of the random structure? (2) Assuming a type of randomness
of the dielectric object, what random properties does the scattered EM-field have? As applications
addressing questions (1) we mention the references [1] for soil layer analysis, and [2] for human tissue
analysis; as references addressing question (2) we mention the research papers [3–5] on wave propagation
in random media.

Monte-Carlo method [6, 7], perturbation analysis [8, 9], maximum-entropy [10, 11], and polynomial
chaos [12, 13] are commonly used to estimate random characteristics such as average field and the
Karhunen-Loève uncorrelated statistics. These methods are used in the analysis of EM wave propagation
in media with random inhomogeneities like the atmosphere [4, 8], in random dielectric structures such
as human tissue [14, 15], in layered soil [1, 16], and in dielectric silicon layers [17, 18].

The focus of this paper is on methods to derive characteristics of random electric fields, so that
questions of type (1) and (2) can be addressed. The fields are generated by an incident electromagnetic
plane wave that is scattered by an inhomogeneous dielectric structure with random permittivity. The
scattered field can be obtained from the electric field inside the dielectric object that satisfies a Fredholm
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integral equation of the second kind. The permittivity is determined by a random contrast field defined
on a one-dimensional sample space such that the spatial variable and the random variable are separated.
The solution of the Fredholm integral equation is determined by the random resolvent [19] of the related
integral operator. We show how the resolvent determines the characteristics of the random electric field
inside the dielectric object and the one scattered by that object. We introduce three methods based
on polynomial expansion and the spectral properties of the integral operator by which the random
nature of that resolvent can be fully explored. By doing so, we find readily computable expressions
for the average electric field inside the dielectric object, its variation and autocorrelation. Random
variables such as transmission and reflection coefficients are expressed in terms of these expansions and
the Karhunen-Loève uncorrelated statistics are derived. In the polynomial expansion of the resolvent
we use the monic orthogonal polynomials uniquely related to the probability measure on the probability
space. The corresponding operator-valued expansion coefficients satisfy a three-term recurrence relation
that is very similar to the one introduced in Miller’s algorithm [20, (p. 114)]. We present algorithms
that solve the recurrence relation after truncation. Random characteristics of the random operator field
are expressed in terms of these expansion coefficients. We illustrate the application of the methods by
two examples: a one-dimensional inhomogeneous dielectric slab and a periodic 2D dielectric structure
in TE and TM polarization.

The outline of this paper is as follows. In Section 2 we discuss the mathematical setting of
the problem. The section describes the mathematical context and concepts so that expressions of
characteristics of a random resolvent can be derived in a structured way. This is possible by applying a
Monte-Carlo based approach only at the expense of large computation times and memory storage. In
Section 3 we introduce two methods, a spectral method and an algebraic method to expand the random
resolvent as a series with respect to the unique sequence of monic orthogonal polynomials associated to
the probability measure. We also present extensions and generic applications of the introduced methods.
Section 4 contains two illustrations: a dielectric slab with a contrast function that depends affinely on
the random variable and a periodic structure where the reflection coefficient is a random variable that
depends linearly on the unknown electric field. For a slab the scattering is completely determined by
the reflection coefficient. We present characteristics such as mean, variation, and autocorrelation for
the electric field inside the slab and for the reflection and transmission coefficients. For the periodic
structure we show mean and uncorrelated statistics of the real and imaginary parts of the reflection
coefficient. Finally in Section 5 we draw conclusions and give a short outlook of the proposed methods.

2. MATHEMATICAL SETTING

We consider a random inhomogeneous dielectric object that occupies a domain V in physical space.
The field Esc scattered by the object satisfies an integral relation of the form

Esc (x, ω; α) =
ω2

c2
V

∫
V

G
(
x,x′, ω

)
χ

(
x′; α

)
E

(
x′, ω; α

)
dx′. (1)

Here E(x, ω; α) denotes the total electric field, χ(x, α) the contrast function, G(x,x′; ω) the Green
tensor, ω the angular frequency, x the spatial variable, and α the sample variable. The contrast function
describes the randomness and the inhomogeneity of the dielectric object. The total electric field is the
superposition of the scattered field and the incident field, i.e., E(x, ω; α) = Esc(x, ω; α) + Ein(x, ω).
Thus the following integral equation for the field Edo = E|V inside the dielectric object

Edo (x, ω; α) = Ein (x, ω) +
ω2

c2

∫
V

G
(
x,x′; ω

)
χ

(
x′, α

)
Edo

(
x′, ω; α

)
dx′, (2)

emerges. By solving this integral equation on V , Relation (1) yields the field scattered by the dielectric
object. We assume that the contrast function specifies the random nature of the dielectric object
according to

χ (x, α) = χ0 (x) + f (α)χ1 (x) (3)
where f is a bounded random variable for the probability space (R,B, μ) with B the Borel algebra of R

and μ the probability measure [21]. Since there are a < b such that f(R) ⊂ [a, b], there is a measure μf
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on the interval [a, b] such that μf (A) = μ(f−1(A)), with f−1(A) = {α ∈ R |f(α) ∈ A}. By dilatation
and translation we obtain the scaled sample variable α̂ ∈ [−1, 1],

α̂ =
2

b− a

(
f (α) − a+ b

2

)
= f̂ (α) , (4)

a probability measure μ̂ on the interval J = [−1, 1], and the decomposition of the random contrast field,

χ (x, α̂) =
[
χ0 (x) +

b+ a

b− a
χ1 (x)

]
+ α̂

[
b− a

2
χ1 (x)

]
. (5)

Thus, without damaging generality, we assume a probability space (J,B, μ) with the identity
function f(α) = α as the random variable and the random contrast field given by

χ (x, α) = χ0 (x) + αχ1 (x) . (6)

We can write the integral equation for the field Edo in operator form(
I −Gdo

0 − αGdo
1

)
Edo = Ein, (7)

where Gdo
0 and Gdo

1 denote the integral operators,
(
Gdo

r u
)

(x) =
ω2

c2

∫
V

G
(
x,x′; ω

)
χr

(
x′)u

(
x′) dx′, r = 1, 2, x ∈ V (8)

on the Hilbert space L2(V, dx). The scattered field is the result of the application of the integral operator
Gsc

0 + αGsc
1 defined by

(Gsc
r u) (x) =

ω2

c2

∫
V

G
(
x,x′; ω

)
χr

(
x′)u

(
x′) dx′, r = 1, 2, x /∈ V (9)

to the electric field Edo,
Esc = (Gsc

0 + αGsc
1 )Edo. (10)

In an application, the typical stochastic characteristics are: (1) the average electric field inside the
object, E = Edo, and of the scattered field, E = Esc,

〈
E (x)

〉
=

∫
J

E (x, α) dμ (α) , (11)

(2) the autocorrelation kernel

Cpq (x, ξ) =
∫
J

Ẽp (x, α) Ẽq(ξ, α)∗dμ(α), (12)

where p and q indicate the components of the electric field and where Ẽ(x, α) = E(x, α) − 〈E(x)〉,
and (3) the absolute variation defined by

Γ (x, ω) =
〈|E (x, ω)|2〉 − ∣∣〈E (x, ω)

〉∣∣2, (13)

which is a measure of incoherence due to randomness.
In a mathematically generic formulation, we consider bounded operators G0 and G1 on a Hilbert

space H. The inner product of H is denoted by [u, v]H and corresponding to that inner product A∗
denotes the adjoint of the bounded linear operator A, such that [Au, v]H = [u,A∗v]H. The random
resolvent field

α(I −G0 − αG1)
−1, (14)

with I the identity operator, is associated to the following linear equation in H,

(I −G0 − αG1)u = e. (15)



32 Barzegar, van Eijndhoven, and van Beurden

A straightforward solution method to solve Equation (15) is the following. We write G =
(I −G0)−1G1 and e0 = (I −G0)−1e. Then the equation becomes

(I − αG) u = e0. (16)

The solution u = (I − αG)−1e0 can be represented by the (Neumann) series

u =
∞∑

n=0

αnGne0. (17)

for α with |α| < r(G)−1 where r(G) = limn→∞‖Gn‖ 1
n is the spectral radius of G. Thus, if r(G) < 1,

then the series converges absolutely and uniformly on the interval J . For details we refer to [22].
For notational convenience we write R(G,α) = (I − αG)−1, the random resolvent. We define the

resolvent mean 〈R(G)〉 and the resolvent variation Σ(G) by

R0(G) =
〈
R(G)

〉
=

∫
J

R (G,α) dμ(α), (18)

and

Σ(G) =
〈
R(G)∗R(G)

〉 −R0(G)∗R0(G) =
∫
J

(R (G,α) −R0(G))∗ (R (G,α) −R0(G)) dμ (α) . (19)

Then for given e0, e1 and e2 ∈ H, and a bounded operator G, the characteristic averages of the
integral equation satisfy

〈R(G)e0〉 = R0(G)e0, (20)
〈[e1, R(G)e0]H〉 = [e1, R0(G)e0]H , (21)
〈[(R(G) −R0(G)) e1, (R(G) −R0(G)) e2]H〉 = [e1,Σ(G)e2]H . (22)

If r(G) < 1, we can apply the Neumann series and obtain the following series expansions

R0(G) =
∞∑

n=0

mnG
n, (23)

Σ(G) =
∞∑

n=0

n∑
k=0

(mn −mkmn−k) (G∗)n−kGk. (24)

We note that the moments mn =
∫
J

αndμ(α) of the probability measure satisfy,

|mn| =
∫
J

|α|ndμ (α) � 1. (25)

which guarantees the convergence of both expansions.
The relationship between the above mathematical formulation and Equations (7) and (10) is given

by

Edo =
(
I −Gdo

0 − αGdo
1

)−1
Ein = R

(
Gdo, α

)
Edo

0 , (26)

where Edo
0 = (I −Gdo

0 )−1Ein, and

Esc = (Gsc
0 + αGsc

1 )R
(
Gdo, α

)
Edo

0 . (27)

Remark 1
In case of a random operator field G(α), |α− α0| ≤ Δα, instead of G0 + αG1, −1 ≤ α ≤ 1, we can

linearize the expression according to

G(α) = G (α0 + α̂Δα) ∼= G0 + α̂G1, (28)
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where G0 = G(α0) and G1 = 1
2Δα(G(α0 + Δα) − (G(α0 − Δα)).

In the next section we elaborate on the expansion of the resolvent α → R(G,α) in terms of the
unique sequence of monic orthogonal polynomials corresponding to the probability measure μ. We
present two algorithms to compute the corresponding operator coefficients: one based on the collection
of eigenvalues (spectrum) of the integral operator, the other one based on an algebraic factorization
related to the recurrence relations satisfied by the orthogonal polynomials.

3. ORTHOGONAL POLYNOMIAL RESOLVENT EXPANSION

As a general reference to this section we refer to the monograph of Gautschi [20]. For the probability
measure μ on the interval J , there is a sequence of polynomials pn(α), n = 0, 1, 2, . . . uniquely defined
by

(i) pn is a polynomial of degree n that is monic, i.e., pn(α) = αn + . . .

(ii) For all n and all m, 0 ≤ m < n,

∫
J

αmpndμ = 0, (29)

i.e., pnpm = 0, m 
= n following the definition in Equation (18). We introduce the normalizations,

νn = (pn)2 =
∫
J

(pn)2dμ, (30)

and
σn = α(pn)2 =

∫
J

α(pn)2dμ. (31)

The polynomials satisfy a three-term recurrence relation of the form

αpn(α) = pn+1(α) + anpn(α) + bnpn−1(α), n = 1, 2, . . . (32)

with initialization p0(α) = 1 and p1(α) = α−m1. The coefficients (an) and (bn) are called the Jacobi-
Szegö parameters [23]. We have

an =
σn

νn
, n = 1, . . . and bn =

νn

νn−1
, n = 1, 2, . . . (33)

We note that a0 = m1. To initiate the spectral approach, we first briefly explore the scalar case.
For each λ with λ /∈ (−∞, 1]∪ [1,∞) the function α→ (1 − αλ)−1 is square integrable and thus can be
expanded with respect to the polynomials pn,

(1 − αλ)−1 =
∞∑

n=0

ρn(λ)pn (α) , (34)

where ρn(λ) = 1
νn

∫
J

pn(α)
1−αλdμ(α). The functions ρn(λ) are related to the associated functions qn(z) that

are analytic on the complex plane cut by the segment J , see [20, p. 18]. For the classical polynomials
the associated functions are known explicitly. In the general case, a backward recurrence scheme (c.f.
Miller’s algorithm) is applied to calculate the associated functions. In both spectral and algebraic
approaches, we use the polynomial expansion of the resolvent with respect to the monic orthogonal
polynomials pn(α), i.e.,

R (G,α) =
∞∑

n=0

pn (α)Rn (G) . (35)
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For such expansions we obtain, see (18) and (19)〈
R(G)

〉
= R0(G), (36)

and

Σ(G) =
〈
R(G)∗R(G)

〉 −R0(G)∗R0(G) =
∞∑

n=0

νnRn(G)∗Rn(G). (37)

3.1. Spectral Approach

In the spectral approach, for a matrix approximation G[M ] of the integral operator G diagonalized
according toG[M ] = S[M ]Λ[M ](S[M ])−1 with Λ[M ] = diag(λ1, . . . , λM ) a diagonal matrix, we approximate
the operator expansion coefficients Rn(G) in (35) by

Rn (G) ≈ Rn

(
G[M ]

)
= S[M ]diag (ρn (λ1) , . . . , ρn (λM ))

(
S[M ]

)−1
. (38)

We note that
Rn

(
Λ[M ]

)
= diag (ρn (λ1) , . . . , ρn (λM )) . (39)

If the functions ρn(λ) are not known explicitly, we can calculate them from the recurrence relation
(see (32))

(1 − a0λ) ρ0 − b1λρ1 = 1, (40a)

and for all n = 1, 2, . . .,
(1 − anλ) ρn − λρn−1 − bn+1λρn+1 = 0. (40b)

We assume convergence of the series and hence for some N that ρN+1
∼= 0 and write the

corresponding solution as ρ[N ]
n . With ρN+1 = 0 we get the N -th order approximation ρ

[N ]
n of ρn.

According to Miller’s algorithm we express ρ[N ]
n+1 as

ρ
[N ]
n+1(λ) =

v
[N ]
N−n(λ)

w
[N ]
N−n (λ)

ρ[N ]
n (λ), n = N − 1, . . . , 0. (41)

The polynomials v[N ]
k (λ) and w[N ]

k (λ) are solutions of the two-term recurrence relations

w
[N ]
k+1 (λ) = (1 − λaN−k)w

[N ]
k (λ) − λbN−k+1v

[N ]
k (λ) (42)

v
[N ]
k+1 (λ) = λw

[N ]
k (λ) , (43)

where k = 1, . . . , N − 1 and v[N ]
1 (λ) = λ and w[N ]

1 (λ) = 1 − λaN .
For the functions ρ[N ]

n (λ) we derive the relation

ρ
[N ]
0 (λ) =

w
[N ]
N (λ)

w
[N ]
N+1(λ)

, (44)

and for n = 0, . . . , N − 1

ρ
[N ]
n+1(λ) =

λnv
[N ]
N−n(λ)

w
[N ]
N+1(λ)

. (45)

3.2. Algebraic Approach

In the algebraic approach we start from the series expansion (35). By multiplying both sides of (35) by
I − αG we deduce that
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I =
∞∑

n=0

pn(α) (I − αG)Rn =
∞∑

n=0

pn(α)Rn − αpn(α)GRn

=
∞∑

n=0

pn(α) (I − anG) − pn+1(α)GRn − bnpn−1(α)GRn. (46)

We introduce b0 = 0 and obtain the recurrence relations

(I − a0G)R0 − b1GR1 = I, (47a)

and for all n = 1, 2, . . .,
(I − anG)Rn −GRn−1 − bn+1GRn+1 = 0. (47b)

If RN+1 is known for someN , then the recurrence allows to calculate all other Rn with n = 0, . . . , N ,
from that one. In the N -th order approximation we take R[N ]

N+1 = O. We introduce the operators

Zn = (I − anG)−1G, n = 0, 1, . . . (48)

Then the (backward) recurrence system of equations is written as

R
[N ]
N − ZNR

[N ]
N−1 = 0 (49a)

R[N ]
n − ZnR

[N ]
n−1 − bn+1ZnR

[N ]
n+1 = 0 (49b)

R0 − b1Z0R1 = (I − a0G)−1 (49c)

from which the unknown R[N ]
n can be obtained recursively.

In the algorithm described by (49) at each step of the recursive procedure an inverse should be
taken. In the algorithm described by the formulas in (50) only one inverse should be taken. Inspired
by Miller’s algorithm (see (41)), we see that the operator polynomials w[N ]

k (G) and v
[N ]
k (G) satisfy

w
[N ]
N−n(G)R[N ]

n+1 = v
[N ]
N−n(G)R[N ]

n , n = N − 1, . . . , 0. Thus we obtain

R0 (G) =
{
w

[N ]
N+1 (G)

}−1
w

[N ]
N (G) , (50a)

and for n = 1, . . . , N − 1

Rn (G) =
{
w

[N ]
N+1 (G)

}−1
Gn−1v

[N ]
N−n+1 (G) . (50b)

We note that the operator polynomials w[N ]
k (G) and v[N ]

k (G) satisfy

w
[N ]
k+1(G) = (I − aN−kG)w[N ]

k (G) − bN−k+1Gv
[N ]
k (G), (51a)

v
[N ]
k+1(G) = Gw

[N ]
k (G). (51b)

Remark 2
Let the random vector field u : [−1, 1] → H be defined by u(α) = (I − αG)−1e0. If L is a complex-

valued linear functional on the Hilbert space H, then Lu(α) = L(u(α)) is a random variable and

Lu(α) =
∞∑

n=0

Lu,npn(α) (52)

where Lu,n = L(Rn(G)e0). We write

Lu(α) = Lu,0 +
∞∑

n=1

Lu,npn(α) = Lu,0 + L̃u(α) (53)

with Lu,0 the average of the complex random variable Lu. The random variable Lu(α) describes a curve
in the complex plane.
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Remark 3
As a side result of the polynomial expansion of a random variable we derive the Karhunen-Loève

expansion. Let K denote the 2 × 2-autocorrelation matrix,

K =
∞∑

n=1

νn

(
Re(Lu,n)2 Re (Lu,n) Im (Lu,n)

Re (Lu,n) Im (Lu,n) Im(Lu,n)2

)
(54)

Then we find the uncorrelated statistics in the form
Lu(α) = Lu,0 + [ξ1 ψ1(α) + ξ1ψ2(α)] (55)

where ξ1 = ξ11 + jξ21 and ξ2 = ξ12 + jξ22 and where ξ1 =
[
ξ11
ξ21

]
and ξ2 =

[
ξ12
ξ22

]
are the

orthonormal eigenvectors of the matrix K with positive eigenvalues λ1 and λ2. Further, with
Lu,n = [Re (Lu,n) , Im (Lu,n)]T we calculate the ψr(α) according to

ψr (α) =
∞∑

n=1

[ξr,Lu,n]Hpn (α) , r = 1, 2 (56)

Then 〈ψr〉 = 0 and 〈ψrψr′〉 = λrδrr′ . Thus the variation of the random variable Lu is given by〈|Lu|2
〉 − ∣∣〈Lu

〉∣∣2 = λ1 + λ2. (57)

4. ILLUSTRATIONS

We continue by illustrating the methods presented in the previous section for two examples:
(i) an inhomogeneous dielectric slab with random permittivity,
(ii) a two-dimensional periodic dielectric object with random permittivity.

In a true application, the integral equation should be approximated by a matrix equation. This is an
additional complication that we do not address in this paper. Therefore, we use illustrations with known
discretizations. We apply our methods to an inhomogeneous dielectric slab with a contrast function that
depends linearly on the spatial variable, as well as on the random variable. We determine the average and
the variation of the random electric field inside the slab. We show the dependence of these characteristics
on the selected probability measures. The second illustration refers to a well-established model that
describes the electromagnetic scattering effects of TE and TM polarizations for a two-dimensional
dielectric object with one-dimensional periodicity, see [24]. We provide random characteristics of the
reflection coefficient such as average and variation for different ranges of the dielectric permittivity for
both TM and TE polarizations. With reference to (7) and (8), in our numerical implementations, Gdo

0

and Gdo
1 are replaced by size-M matrices Gdo,[M ]

0 and G
do,[M ]
1 , the incident field Ein(·) by the vector

Ein,[M ], the field Edo
0 = (I −Gdo

0 )−1
Ein by the vector Edo,[M ]

0 = (I −G
do,[M ]
0 )

−1
Ein,[M ], and the operator

Gdo = (I −Gdo
0 )−1

Gdo
1 by the matrix Gdo,[M ] = (I −G

do,[M ]
0 )

−1
G

do,[M ]
1 . Thus in the N -th approximation

the random resolvent R(Gdo, α) is replaced by

R[N ]
(
Gdo,[M ], α

)
=

∞∑
n=0

R[N ]
n

(
Gdo,[M ]

)
pn(α). (58)

For the scattered field we discretized the integral operator Gsc
0 + αGsc

1 and obtain the matrices
G

sc,[M ]
0 + αG

sc,[M ]
1 . The corresponding scattered field is generally described in terms of the random

reflection and transmission coefficients.

4.1. Illustration 1: Dielectric Slab

The slab thickness d is fixed and described by the spatial variable z, 0 < z < d. The inhomogeneity
is determined by the contrast function that linearly depends on the variable z. The randomness of the
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contrast function is according to χ = χ0 + αχ1, where

χ0 (z) = (ε̄r − 1)
z

d
and χ1 (z) = Δεr

z

d
. (59)

In (59), the parameters ε̄r and Δεr, with ε̄r > 1 and Δεr > 0 determine the relative permittivity
range [ε̄r − Δεr, ε̄r + Δεr] on which a probability distribution is defined. The sample variable α ∈
[−1, 1] rescales the permittivity range and with that the probability distribution. The contrast function
is assumed independent of the frequency of the incident field. In the lossless slab this assumption is
valid in the frequency range that we consider.

We scale the spatial variable z by d and the wave number by 1
d , to obtain the dimensionless number

κ = ωd
√
ε0μ0. The scaled field Edo satisfies the following integral equation

Edo(z) − jκ

2

1∫
0

ejκ|z−z′|χ
(
z′

)
Edo

(
z′

)
dz′ = ejκz 0 < z < 1 (60)

with time convention e−jωt. Thus the integral operators G0 and G1 are defined on the Hilbert space
L2([0, 1]) according to

(Gru) (z) =
jκ

2

1∫
0

ejκ|z−z′|χr

(
z′

)
u

(
z′

)
dz′, r = 0, 1 (61)

In our illustration we take κ in the range from 0.2π to 20π. We can vary κ by changing frequency
or slab thickness.

The normalized reflected and transmitted fields, Ere and Etr are determined by the relation

Ere(z) = ejκz + Lre(E)e−jκz, z < 0 (62)

and
Etr(z) =

(
1 + Ltr(E)

)
ejκz, z > 1. (63)

Here the linear functionals Lre and Ltr are defined by

Lre(u) =
jκ

2

1∫
0

ejκz′χ
(
z
′)
u

(
z′

)
dz′, (64)

Ltr(u) =
jκ

2

1∫
0

e−jκz′χ
(
z
′)
u

(
z′

)
dz′. (65)

Then reflection coefficient can be written as

Lre (E(α)) = Lre
0 (E(α)) + αLre

1 (E(α)) (66)

with Lre
r (u) = jκ

2

1∫
0

ejκz′χr(z
′
)u(z′)dz′, r = 0, 1. Since E(α) =

∞∑
n=0

(Rn(G)E0)pn(α) by applying the

recurrence relation for αpn(α) we obtain the following expansion for the random reflection coefficient
Cre

Cre(α) = Lre (E(α)) =
∞∑

n=0

�re
n (E0) pn(α) (67)

with
�re
n (E0) = Lre

0 (Rn(G)E0) + Lre
1 (Sn(G)E0) (68)

and

S0(G) = m1R0(G) + b1R1(G) (69a)
Sn(G) = Rn−1(G) + anRn(G) + bn+1Rn+1(G), n ≥ 1. (69b)
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In the discretization z is replaced by the discretized variable zl = l−1
M , l = 1, M+1. We equidistantly

discretize the integral equation based on the formulation in [25, p. 163] and replace the integral operators
G0 and G1 by the matrices G[M ]

0 and G[M ]
1 defined by

G[M ]
r =

jκ

2M

[
ejκ

|m−l|
M χr

(
l − 1
M

)]
m,l

, r = 1, 2 (70)

In the illustrations we take M = 200.
For the reflection coefficient in the N -th order approximation and after discretization we obtain

the random variable

Cre,[M ] (α) =
N∑

n=0

�re,[N ]
n

(
E

[M ]
0

)
pn(α), (71)

with

�re,[N ]
n

(
E

[M ]
0

)
=

(
f

[M ]
0

)T
R[N ]

n

(
G[M ]

)
E

[M ]
0 +

(
f

[M ]
1

)T
S[N ]

n

(
G[M ]

)
E

[M ]
0 , (72)

f [M ]
r =

jκ

2M

(
ejκ

l−1
M χr

(
l − 1
M

))
∈ C

M+1×1. (73)

The following characteristics are calculated:

• Average field vector 〈
Edo,[M ]

〉
= R

[N ]
0

(
Gdo,[M ]

)
E

do,[M ]
0 , (74)

with absolute value Am and phase φm components〈
Edo,[M ]

m

〉
= Ame

jϕm , m = 1, . . . ,M + 1. (75)

• Absolute variation vector Γdo,[M ] defined by

Γdo,[M ]
m =

N∑
n=1

νn

∣∣∣(R[N ]
n

(
Gdo,[M ]

)
E

do,[M ]
0

)
m

∣∣∣2, (76)

• With mean Γ̄do,[M ]

Γ̄do,[M ] =
1

M + 1

M+1∑
m=1

Γdo,[M ]
m . (77)

Similarly, for the reflection coefficient the average �re,[N ]
0 (E[M ]

0 ), the variation
N∑

n=1
νn|L[N,re]

n (E[M ]
0 )|2,

and the Karhunen-Loève expansion (see (55)) can be computed.
First we address the Neumann series approach as suggested in Section 2. If the spectrum of the

matrix G[M ] contains values with a modulus larger than 1, the series
∞∑

n=0

m2n

(
Gdo,[M ]

)2n
(78)

is not convergent to R0(Gdo,[M ]). We use the uniform distribution on the interval [−1, 1] with nonzero
moments m2n = 1

2n+1 .
Figure 1(a) shows that the absolute value of the average electric field obtained by the spectral,

algebraic and Neumann series approaches for κ = 2.8 are the same, where we took N = 35 to cut-off the
series. We note that all the eigenvalues of Gdo,[M ] are within the unit circle. In Figure 1(b) we compare
the solution obtained from these three approaches for κ = 28 on logarithmic scale. We see that the
solution obtained from the Neumann series is not equal to the solutions from the other two approaches.
The reason is that for κ = 28 the matrix Gdo,[M ] has two eigenvalues with an absolute value larger than
one.
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Figure 1. Absolute average electric field inside the slab for (a) κ = 2.8 and (b) κ = 28. For κ = 2.8
all eigenvalues have absolute value smaller than one. For κ = 28 two eigenvalues have absolute value
larger than one.
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Figure 2. (a) Pdf-s of the Beta distribution for p = 1 and q = −1
3 , −1

5 , 1, 3, 5, (b) magnitude of the
average field inside the slab for the distributions depicted in (a) where κ = 10, ε̄ = 5, and Δεr = 1.
The legend for both plots is the same.

Figure 2 shows the probability density functions w(p,q) (see (A14)) for the Beta probability measure
with p = 1 and q = −1

3 , −1
5 , 1, 3 and 5. Figure 2(b) shows the magnitude of the average field |〈Edo〉| in

the slab. The effect of the choice of the probability measure is clearly visible. Globally we see a linear
decrease in magnitude with an oscillation on top. The decrease is sharper for the negative values of q
where the interval [−1, 0] is more probable than the interval [0, 1]. Also amplitude of the oscillations
increases with increasing q.

Figure 3(a) presents the magnitude and relative variation of the average field for different values
of κ, κ = 1, 5, 10, 20 and 40 for the uniform probability measure where the mean relative permittivity
is ε̄ = 5 and Δε = 1. We see that the number of oscillations increases proportionally with κ and there
is an overall decrease with a rate that increases with κ except for κ = 40, where a node appears at
z = 0.73. Figure 3(b) shows the absolute variations of the random electric field for κ = 10 and for
various values of the range [5 − Δεr, 5 + Δεr], with Δεr = 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50. The
variation increases as Δεr increases.
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uniform probability distribution.
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Figure 4. (a) Magnitude of the average reflection coefficient as function of κ for different values of
Δεr, (b) the variation of the reflection coefficient as function of κ for different values of Δεr.

Figure 4(a) shows the magnitude of the average reflection coefficient as function of κ where
Δεr = 0.1, 0.2, 0.5 and 1.0. We see that for κ < 2 there is hardly any effect of the randomness
of the permittivity on the average reflection coefficient. This observation is confirmed in Figure 4(b)
where the variation of the reflection coefficient is shown; for values of κ < 2 the variation is negligible.
For κ > 2 we see that κ really distinguishes between the different values of Δεr. In Figure 4(a) we
observe a decrease with a higher rate for higher Δεr values. Also this observation is confirmed by
Figure 4(b) where we see a sharp increase of the variation as function of κ for larger values of Δεr. For
the comparison between a standard Monte-Carlo method and the presented polynomial expansion we
refer to [26], where it is shown that the convergence in the polynomial expansion method is exponential
whereas the convergence rate of the Monte-Carlo method is in the order of one over the number of
samples.
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4.2. Illustration 2: Periodic Structure

In the papers [24] and [27], the 2-dimensional scattering problem of a 1-dimensionally periodic dielectric
grating, embedded in a stratified medium is formulated as a spectral domain integral equation. We
briefly outline both the TE and TM polarization. For TE polarization, the integral equation is given
by (

I − gTEM (εr)
)
Edo = Ein (79)

where, as in Section 2, Ein indicates the (scalar) electric field incident on the structure and where Edo

represents the total electric field inside the structure. By gTE we denote the integral operator related to
the Green function of TE polarization. It depends on the stratified medium, the period Λ, the free-space
wavelength λ0, and the angle of incidence θi of the incident field. By M(εr) we denote the contrast
operator of the dielectric rectangular object (the grating) depicted in Figure 5 that is affinely related
to its permittivity.

Figure 5. Schematic of the 2D periodic structure. We assume that the permittivity of the grating εr
is random.

For the case of TM polarization, the formulation is more involved, due to the application of the
inverse rule, see [28], to properly handle discontinuous material interfaces in the spectral domain. The
integral equation in terms of the total electric field is then given by(

I − gTMM (εr) (L (εr))
−1

)
Edo = Ein (80)

where gTM is the integral operator related to the TM polarization Green function, and Ein and Ed0 are
the (vectorial) TM-polarized incident field and total electric field inside the structure, respectively. The
expression M(εr)(L(εr))

−1 denotes the contrast operator that involves the inverse rule. The operator
M(εr) depends affinely on εr, whereas (L(εr))

−1 depends linearly on ε−1
r , the inverse permittivity of

the grating. Thus, in general, M(εr)(L(εr))
−1 does not depend linearly on εr. In summary, the above

integral equations for the scattering by a 2D dielectric periodic structure can be described as,

(I −G (εr))Edo = Ein (81)

where Ein indicates the electric field incident on the structure and where Edo represents the electric
field inside the structure. By G(εr) we denote domain integral operator (or its discretized version).
We suppose that εr ∈ [εr,min, εr,max]. The solution of Equation (79) is the random electric field
E(εr) ≡ E(z, εr) where z refers to a spatial variable that fixes the structure.

For the TE- and TM-polarizations, we have G(εr) = GTE(εr) = gTEM(εr) and G(εr) =
GTM(εr) = gTMM(εr)(L(εr))

−1, respectively. Since M(εr) affinely depends on εr we can write
GTE(εr) = GTE(ε̄r + αΔεr) = GTE

0 + αGTE
1 with GTE

0 = gTEM0 + ε̄rg
TEM1 and GTE

1 = ΔεrgTEM1.
So for the TE polarization we can use the methods introduced in Section 3 to calculate the random
characteristics of Equation (79). To use the methods for the TM polarization we linearize the operator
field εr → GTM(εr), εr ∈ [εr,min, εr,max],

GTM (εr) = GTM (εr + αεr) ∼= GTM
0 + αGTM

1 . (82)
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See Remark 1 at the end of Section 2. Again we assume that the sample interval [−1, 1] is endowed
with a probability measure μ.

We apply formulas (52) and (53) to the random reflection coefficient Cre that is linearly related to
the electric field. For the example of a layered medium with a setup depicted in Figure 5 and values
according to Table 1, we assume a uniform distribution on the sample interval [−1, 1].

Table 1. Values of the parameters shown in Figure 5.

Parameter Symbol Value
grating width w 0.5λ0

grating height h 1λ0

first layer thickness d 0.8λ0

period Λ λ0

permittivity of upper halfspace εr,0 1
permittivity of the first layer εr,1 3

permittivity of the lower halfspace εr,2 18.4+0.4j
permittivity of the grating εr 5 ± Δε

angle of incidence θi 30◦
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Figure 6. Magnitude of the average reflection coefficient. (a) 〈RTE〉 for TE polarization, (b) 〈RTM〉
for TM polarization versus Δεr are shown where εr = 5.

In all numerical calculations we used εr = 5. In Figure 6, we show the magnitude of the average
reflection coefficient as function of the sample range Δεr for (a) the TE polarization and (b) the TM
polarization. Calculations are based on Monte-Carlo sampling (for 100 samples) and the method of
random resolvent described above. We observe that the TE polarization reflection coefficient calculated
on basis of the Monte-Carlo method (gray) and the polynomial expansion method (black), respectively,
match very well. In TM polarization also, despite of the nonlinear relation between the reflection
coefficient and Δεr, the result of the linearized random resolvent method is remarkably good. The results
(see Figure 6(b)) show that linearization gives an accurate approximation of the reflection coefficient of
the structure.

In Figure 7 we show results of the Karhunen-Loève uncorrelated decomposition as applied to the
TM and TE polarization reflection coefficients. In Figure 7(a) we show the variation of these reflection
coefficients as a function of Δεr. This variation is equal to the sum of the eigenvalues ξ1(Δεr) and
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Figure 7. (a) Variation of the reflection coefficient for TM and TE polarizations as function of Δεr, (b)
two eigenvalues (ξ1 and ξ2) for both TE and TM polarization, (c) the orientation of the eigenvector for
TM and TE polarization, (d) uncorrelated statistics ψ1 and ψ2 based on Karhunen-Loève decomposition
for Δεr = 1.25.

ξ2(Δεr) of the autocorrelation matrix (see (54)). The eigenvalues as function of Δεr are displayed
in Figure 7(b). We observe that the variation of both reflection coefficients is about the same. The
eigenvalues are not; there is a clear difference observable for 0.75 < Δεr < 1.5. We define the orientation
of the basis of the eigenvectors (principle components) to be the smallest angle between each of these
vectors and the x-axis. This orientation shown in Figure 7(c) shows a clearly distinguishable difference
between TE and TM polarizations. The conclusion is that the difference in the statistics of the TM
and the TE reflection coefficients is clearly observable in the orientation of the orthonormal basis. In
Figure 7(d) we present the uncorrelated random variables ψ1 and ψ2 according to the Karhunen-Loève
decomposition (see (55)) with Δεr = 1.25 for both polarizations. The qualitative behavior is the same,
but there is a quantitative difference.

5. CONCLUSION

We introduced the concept of the random resolvent in relation to domain integral equations that describe
the electric field inside a dielectric object with inhomogeneous random dielectric permittivity illuminated
by an incident electric field. This concept is fruitfully applied in a novel method to solve the domain
integral equation if the integral kernel depends affinely on the random variable or is well approximated
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by its linearization with respect to that variable. We employ an expansion with respect to the unique
set of monic orthogonal polynomials related to the probability measure on the sample interval that
characterizes the randomness of the dielectric. In terms of this expansion, we describe mean, variation,
and other properties of the random electric field or of its scattering characteristics. Thus we obtain
the true characteristics of the random electric field at low computational costs in comparison to cost
of methods based on a Monte-Carlo sampling strategy. The performance of the proposed method was
verified on the basis of two cases: (1) computation of the mean and variation of the electric field inside
a random inhomogeneous dielectric slab, and the associated reflection coefficient for different ranges of
dielectric permittivity, different probability measures, and different frequencies; (2) computation of the
mean and variation of the scattering coefficients for the TE and TM polarizations of a 2D dielectric
periodic structure, and their uncorrelated statistics.
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APPENDIX A.

For the probability measure μ, the corresponding orthogonal polynomials satisfy a three-term recurrence
relation

αpn(α) = pn+1(α) + anpn(α) + bnpn−1(α), n = 1, 2, . . . (A1)

with initialization p0(α) = 1 and p1(α) = α−m1. We define the μ-associated functions by

qn(z) =
∫
J

1
z − α

pn(α)dμ (α) , n = 0, 1, 2, . . . (A2)

where z ∈ C, z /∈ J , J = [−1, 1]. The functions are analytic on the complex plane cut by the segment
J . We observe that

qn(z) = pn(z)q0(z) − rn(z) (A3)

with the polynomial rn of degree n− 1 given by

rn(z) =
∫
J

pn(z) − pn(α)
z − α

dμ(α). (A4)

In [20] the polynomials rn are called the μ-associated polynomials. The μ-associated functions satisfy
the same recurrence relation as the orthogonal polynomials pn,

zqn(z) = qn+1(z) + anqn(z) + bnqn−1(z) (A5)

with n ≥ 1 and zq0(z) = q1(z) +m1q0(z) + 1. It follows that q1(z) = p1(z)q0(z) − 1. We conclude that
we can derive the polynomials rn from the recurrence relation

zrn(z) = rn+1(z) + anrn(z) + bnrn−1(z), n = 1, 2, . . . (A6)

initialized by r0(z) = 0 and r1(z) = 1. Since

1
1 − αλ

=
1
λ

∞∑
n=0

1
νn
qn

(
1
λ

)
pn(α) (A7)

we derive that ρn(λ) = 1
λνn

qn( 1
λ ).
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A.1. Legendre Polynomials, Pn

In this case we have dμ(α) = 1
2da with moments m2k+1 = 0, m2k = 1

2k+1 and the recurrence relations
(see [29, Eq. (1.8.60)])

αPn(α) = Pn+1(α) +
n2

4n2 − 1
Pn−1(α) (A8a)

P0(α) = 1, P1(α) = α (A8b)
The corresponding normalizations are given by

νn =
1
2

1∫
−1

Pn(α)2dα =
πΓ (n+ 1) Γ (n+ 1)

22n+1Γ
(
n+ 1

2

)
Γ

(
n+ 3

2

) (A9)

and the σn are 0. The μ-associated function Q0(z) can be calculated straightforwardly,

Q0(z) =
1
2

1∫
−1

1
z − α

dα =
1
2

log
z + 1
z − 1

, z ∈ C \ [−1, 1] (A10)

And thus for the μ-associated functions Qn(z) we have

Qn(z) =
1
2
Pn(z) log

z − 1
z + 1

− rn(z), z ∈ C \ [−1, 1] (A11)

with r0(z) = 0 and r1(z) = 1, and

zrn(z) = rn+1 (z) +
n2

4n2 − 1
rn−1(z), n ≥ 1 (A12)

Consequently for λ ∈ C \ {−1, 1}
1
2

1∫
−1

Pn(α)
1 − αλ

dα =
1
λ
Qn

(
1
λ

)
(A13)

with the above interpretation.

A.2. Jacobi Polynomials, P
(p·q)
n

The Jacobi polynomials are the system of orthogonal polynomials related to the measure μ(p,q) on the
interval [−1, 1] defined by the density function

w(p,q) (α) =
1

ω(p,q)
(1 − α)p(1 + α)q (A14)

where p, q > −1 and where
ω(p,q) = 2p+q+1B (p+ 1, q + 1) (A15)

The probability measures related to this density function are called beta distributions. Here B(., .)
denotes the Beta function. The recursive relation satisfied by the monic Jacobi polynomials is quite
involved. The Jacobi-Szegö coefficients are given by:

a(p,q)
n =

(q − p) (q + p)
(2n + q + p) (2n+ q + p+ 2)

(A16a)

b(p,q)
n =

⎧⎪⎪⎨
⎪⎪⎩

4 (1 + p) (1 + q)
(2 + q + p)2 (3 + q + p)

, n = 1

4n (n+ p) (n+ q) (n+ q + p)
(2n+ q + p− 1) (2n+ q + p)2 (2n+ q + p+ 1)

, n > 1
(A16b)

The normalizations are obtained from ν
(p,q)
0 = 1, and

ν(p,q)
n = b(p,q)

n ν
(p,q)
n−1 , n = 1, 2, . . . (A17)
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