Evaluation of Forces and Torques Generated by Toroidal Helicoidal Magnetic Fields

Roberto Muscia*

Abstract—In this paper, the computation of forces and torques mutually applied between a helical toroidal magnet and a magnet shaped like an angular plane sector is illustrated. The evaluation considers the magnetostatic field hypothesis. The main aim of this study is to present a tool for performing fast and accurate evaluation of forces and torques based on the method of the magnetic charges referring to helical toroidal magnetic systems. The particular geometry of the case study concerns the development of unconventional configurations of electrical machines. These configurations should reduce the magnetic flux changing during the machine operation. A small change of the magnetic flux reduces all the losses related to the flux variation. The illustrated model for the computation of forces and moments also shows a starting point for a reliable analytical numerical evaluation of the external/internal actions applied to parts of other kinds of helical toroidal systems as stellarator and similar ones.

1. INTRODUCTION

Efficiency depends on several factors, and the geometric configuration of an electrical machine usually significantly affects the performance. For reasons of manufacturing simplicity and rationality, two kinds of electric machines are usually designed and manufactured: those with a rotational degree of freedom (the traditional electric generators/motors) and those with a translation degree of freedom (electromechanical linear actuators). The performance of these devices is not always high in both cases. Factors related to the i) nonlinear magnetization characteristic [1–3], ii) non-linear demagnetization of permanent magnets [4,5], and iii) saturation effects reduce the efficiency. These phenomena also depend on the geometric configuration of the device. Consequently, as discussed in [6], the attempt for evaluating if there are other possible architectures for magnetic systems that minimize the previously mentioned negative effects of the factors i), ii), and iii) can be beneficial. Therefore, with reference to the development of new configurations of electrical machines, a toroidal helicoidal arrangement of permanent magnets has been considered.

In order to perform quick and accurate evaluation of the performance of such devices, it is important to evaluate forces and torques that the helical toroidal permanent magnet applies to the moving permanent magnets. Before we illustrate the mathematical physical model developed to evaluate forces and torques, a short description of the magnetic system is given. The system has already been partially described in [6], but for the convenience of the reader, its working principle is summarized in the following. We can also see that the knowledge of forces and moments caused by this particular configuration of the magnetic field can be advantageous not only when searching for new configurations of electrical machines with high efficiency. Actually, the model for the computation of forces and moments illustrated in the following also represents a starting point for a reliable analytical numerical evaluation of the external/internal actions applied to other kinds of helical toroidal system. In these systems, synchrotron light sources [7], tokamaks [8–12], stellarator [13–17], and hybrid tokamak-stellarator [18],
magnetic forces are applied to electrical helicoidal coils. In order to ensure a good structural strength of such devices, these forces have to be evaluated. In Figure 1(a) conceptual model of the helicoidal toroidal configuration studied is illustrated. The device consists of six different parts: i) a helical toroidal permanent magnet A, ii) a curvilinear screw B, iii) a lobed ring C, iv) six rolling bearings D, vi) a permanent magnet shaped as a circular sector E, and vii) a pin F. The magnets A and B are fixed, have no relative motion. Conversely, the lobed C ring is coupled to a curvilinear screw B. Consequently, also the motion of C around B toroidal helicoidal. Since the pin F is integral to C, F has the same motion C. A permanent magnet E shaped with a circular sector shape is fixed to the end of F. So, when C rotates around B, also the magnet E moves with the toroidal helical motion previously quoted. Since the screw B and the toroidal helical magnet A have the same step, if during the motion of the lobed ring C around B the magnet E rotates appropriately around the pin F, the distance between the facing surfaces of the magnets E and A does not change. The magnetization vector M of the magnet A is applied along the binormal unit vector relative to the barycentric helical toroidal curve of the same magnet. E has a magnetization M parallel to the rectilinear edges of the polarized angular sector (see the magnification in Figure 1). This M is equal but opposite with respect the magnetization of A. By the helical toroidal coupling between B and C, whatever is the position of C, the magnetization of A and E are always aligned towards the binormal unit vector relative to the barycentric helical toroidal curve of the magnet A. In Figure 2 a prototype of the coupling C-B is shown. The device has been manufactured with a 3D printer and allows us to obtain a helical toroidal motion of the part C. The precision of such motion can also be increased by more complicated devices [19]. In Figure 3(a) the lobed ring C is illustrated in greater detail. We note the six bearing D which can rotate as indicated by the curved arrows. The external rings of these bearings rotate while the internal rings are integral to the body (the internal rings are fixed to C by suitable screws). In Figure 3(a), W_C denotes the contact points of the bearings with the three threads of the helical toroidal screw B. In order to define exactly the contact points W_C, the transversal sections of the three threads of the screws are also lobed [see Figure 3(b)]. We can also observe that during the motion of the ring C, its centre U_m always belongs to the barycentric circumference Γ_R of the helical toroidal screw B. Moreover, whatever the position of C is, between the magnet E facing the magnet A there is always an air gap. This air gap is obtained by fixing a suitable relative position of the magnet A in relation to the helical toroidal screw B. From a mechanical point of view, the system has two degrees of freedom (DOFs): the first one defines the position of the part C in relation to the screw B, the second one fixes the position of the magnet E in relation to C [E can rotate around the axis of the pin F, see the curved arrow around the axis U_m-K_m of F in Figure 3(a)]. For example, the first DOF can be chosen as a rotation angle of the part C around the tangent s-s to the circumference Γ_R of the helical toroidal screw B at the point U_m [see Figure 3(a)]. By imposing this rotation, the part C moves with a helical toroidal motion around the curvilinear screw B. The surface S_a of the magnet E facing the magnet A is indicated in Figure 3(a). The point K_m denotes the barycentre of this surface (a circular sector). The common rotation axis of the pin F and the magnet E belongs to S_a and passes through its barycentre K_m (see also the magnification in Figure 1). A repulsion magnetic force is applied by the magnet A to the polarized circular sector E. If we impose a value to the rotational DOF around the axis U_m-K_m, E can move only along the DOF that defines its helicoidal toroidal motion. Therefore, the repulsion force causes the motion of C together with the parts integral to it, that is, in particular, the same magnet E. The force applied by A to E depends on the value of the rotational DOF around the axis U_m-K_m that we have fixed. Consequently, for each pair of values imposed on the two DOFs previously mentioned, we obtain a certain force applied by A to E.

In this basic study, electrical coils and the relative currents and effects have not been considered yet. At the present time, evaluations of forces and torques applied by the magnet E to the magnet A by using the finite element method [20-22] have been partially tried, but the results obtained were not very reliable. Additionally, the time computation was very high and also various 3D CAD/CAE models were very difficult to manage. On the contrary, even though complex formulations are necessary, the magnetic charges method [23-30] allows a quick and accurate evaluation of the forces/moments applied
2. PHYSICAL MODELING OF THE SYSTEM FROM A QUALITATIVE POINT OF VIEW

In order to define a mathematical physical model for performing the computation of the forces and moments applied to the polarized angular sector E, it is convenient to describe the system in a qualitative way, without any mathematical detail. During the helical toroidal motion of the ring C, any point of C describes a corresponding helical toroidal path around the circular axis Γ_R of the screw B (see Figures 3 and 2). We can consider especially, a point W of the pin F axis U_m-K_m. Figure 4(a) shows the path Γ_W generated by W: it always belongs to the illustrated torus. The radius of the torus cross section is denoted by r_G. This radius is equal to the distance between the points U_m and W. The contact points W_C of the six bearings D with the three threads of the curvilinear screw B (see Figures 1–3) always belong to the same torus surface. Therefore, we can choose r_G exactly equal to the radius of the torus to which the points W_C belong. $\nu-\nu$ is the axis of the torus whose centre is the point O. In Figure 4(b) a sixth of the curvilinear screw B is illustrated. This part is extended from the point O_i to O_f of the relative curvilinear axis Γ_R of radius R. In this drawing the helical toroidal curve Γ_W is indicated by a dashed-dot line. It belongs to the torus previously cited and illustrated in Figure 4(a).
In Figure 4(b), only the initial and final circumferences of radius \(r_G \) of the torus have been reported (the circumferences are drawn by a dashed-dot line and their centres are the points \(O_i \) and \(O_f \)). The extremes of the path \(\Gamma_W \) are the points \(V_i \) and \(V_f \) that belong to the two circumferences of radius \(r_G \). The force applied by the helical toroidal magnet A to the facing surface \(S_a \) of the polarized angular sector (magnet E) is indicated by the vector \(\mathbf{F}_{S_a} \). In this first qualitative analysis we can assume that this force is applied to the barycentre \(K_m \) of \(S_a \). So we can see that \(\mathbf{F}_{S_a} \) generates a torque related to the point W. As a matter of fact, the contact points \(W_C \) between the bearings D and the threads of the screw B defines a constraint that causes the helical toroidal motion of the set of parts E, F, and C (see Figure 1). The distance from the application point \(K_m \) of \(\mathbf{F}_{S_a} \) and such constraint is exactly equal to the segment \(K_m W \) (W always belongs to the torus of radius \(r_G \) to which the helical toroidal paths of the contact points \(W_C \) also belong).

Therefore, also a moment \(\tau_{S_a W} \) due to \(\mathbf{F}_{S_a} \) is applied to the parts E, F, and C. Now we can consider the component \(\tau_{S_a W_s} \) of \(\tau_{S_a W} \) along the tangent \(s-s \) (see Figure 4(b)). \(\tau_{S_a W_s} \) contributes to defining a rotation of the previous parts along the rotational DOF that defines their position regarding the curvilinear screw B. In Figure 4(c) the schematized representation of the geometry that fixes the motion of the moving element E-F-C is illustrated. The computation of the previous forces and moments is based on the magnetic induction \(B_{S_a} \) evaluation on the surface \(S_a \) of the generic polarized angular sector. Figure 5 shows the field \(B_{S_a} \) generated by A and evaluated on \(S_a \) with the magnetic charge method. The evaluation of \(B_{S_a} \) has previously been performed on all the 70 polarized sectors illustrated in the figure. The detailed procedure of the \(B_{S_a} \) computation and the results only relative to the surface

![Figure 4](image-url)

Figure 4. (a) Torus that contains the path \(\Gamma_W \) of the point W. (b) Force \(\mathbf{F}_{S_a} \) and moment \(\tau_{S_a W_s} \) applied to the surface \(S_a \) of the magnet E. (c) Schematization of the system illustrated in (b).
S\sb{a} are illustrated in [6]. In Appendix A a short explanation of the $B_{S\sb{a}}$ computation is reported. By using a similar procedure we compute $B_{S\sb{b}}$. The position of $S\sb{a}$ is defined by fixing 70 different values of the angular DOF around the tangent s-s of the moving element E-F-C. In order to define the total force and moment applied to the moving parts, all the previous considerations relative to the surface $S\sb{a}$ must be suitably extended to the other surfaces of the magnet E. In the following section this aspect will be examined in detail.

3. PHYSICAL MODELING OF THE SYSTEM FROM A QUANTITATIVE POINT OF VIEW

3.1. Symbology

In relation to the complexity of the system geometry, an early complete description of the meaning of the symbols adopted is suitable. The angular polarized sector E is illustrated in Figure 6(a). We note the plane surface $S\sb{a}$ and also the opposite one $S\sb{b}$ that, for simplicity, has not been mentioned yet. Actually, the shape of the permanent magnet E is defined by i) two parallel plane angular sectors $S\sb{a}$ and $S\sb{b}$, ii) two coaxial cylindrical surfaces of radii $r\sb{1}$ and $r\sb{2}$, and iii) two rectangular surfaces [(see Figure 6(a)]. The magnetization vector M of E (qualitatively indicated in Figure 1) is exactly oriented as illustrated in Figure 6(a) i.e., it is constant and perpendicular to the surfaces $S\sb{a}$ and $S\sb{b}$. In relation to Figure 4(b), we can observe that during the motion of E-F-C, the point $K\sb{m}$ (the barycentre of $S\sb{a}$) describes a helical toroidal curve $\Gamma\sb{m}$ coaxial to $\Gamma\sb{W}$ [see Figures 4 and 6(a)]. This coaxiality is true because $\Gamma\sb{m}$ is obtained by rotating the helical toroidal curve Γ of an angle $\Delta\theta\sb{m}$ around the axis Z. This axis Z substitutes the axis $v-v$ indicated in Figures 4 and 5. The curve Γ is the barycentric curve of the helical toroidal surface of the magnet A facing the surface $S\sb{a}$ (see Figures 1 and 5).

![Figure 5. Semi-quantitative representation of the magnetic induction $B_{S\sb{a}}$ evaluated in 625 points of the surface $S\sb{a}$ and corresponding force $F_{S\sb{a}}$ applied in the point $K\sb{m}$ of $S\sb{a}$.](image)

Again regarding Figure 6(a), we note that Γ belongs to another torus coaxial to the torus of radius $r\sb{G}$ indicated in Figure 4(a). The radius of the circular transversal section of this new torus is $r\sb{m}$. When this radius moves with a helical toroidal motion around the circumference $\Gamma\sb{R}$, generates Γ. Figure 6(a) shows $r\sb{m}$ whose origin is the point U that belongs to the circumference $\Gamma\sb{R}$. The other extreme point of $r\sb{m}$ is K, which belongs to Γ. The angular position of $r\sb{m}$ is defined by the angle $2\pi\theta\sb{U}/\theta\sb{p}$ where $\theta\sb{p} = 2\pi/n$ and n is equal to the number of turns of Γ (in Figures 1 and 5 $n = 5$ coils). $\theta\sb{U}$ identifies the angular position of the point U and changes from 0 to 2π rad. In this way, by fixing $n = 5$ coils, we draw the barycentric curve Γ of the surface of the magnet A facing the surface $S\sb{a}$. The tangent $t-t$ indicated in Figure 6(a) to Γ in K defines the position of the corresponding tangent $t\sb{m-t\sb{m}}$ to $\Gamma\sb{m}$ in $K\sb{m}$; we rotate $t-t$ around the axis Z at the previously quoted angle $\Delta\theta\sb{m}$ and obtain $t\sb{m-t\sb{m}}$. Therefore, as soon as the values of $\Delta\theta\sb{m}$, $\theta\sb{U}$, $r\sb{m}$, $r\sb{1}$, $r\sb{2}$, R, the thickness b, and the semiangle φ of the polarized angular sector E are fixed, we can quantitatively define the position of E during its motion around the
Figure 6. (a) Definition of the polarized sector geometry E. (b) Infinitesimal moment $d\tau_{Sa} W$ and force dF_{Sa} applied to a point of the surface S_a. (c) Surface S_a seen along the direction of its magnetization M.

In the present case study, we have fixed a priori the angular position of the magnet E around the axis of the pin F [see Figures 1 and 3(a)]. So, we have removed this degree of freedom by fixing the position of the tangent $t_m t_m$. We can also note that $t_m t_m$ and the segment $U_m K_m$ define the angular position of the surface S_a around the same segment $U_m K_m$ (the axis of the pin F). Consequently, the position of the moving magnet E is defined. Finally, we observe that edges b of E are not parallel to the tangent $s-s$ to the circumference Γ_R at the point U_m. All the symbols used in Figure 6 are tuned to those considered in [6].

3.2. Magnetostatic Model

In order to perform the computation of the forces and moments applied by the magnet A to the magnet B the magnetic charges method [23–30] has been considered. This approach integrates Maxwell equations

\[\nabla \times H = 0, \]
\[\nabla \cdot B = 0, \]

(H and B represent the magnetic field strength and the magnetic flux density, respectively) by using the so-called volume charge density $\rho_M(P)$ and surface charge density $\sigma_M(P)$ relative to the point P of a magnet:

\[\rho_M(P) \equiv -\nabla \cdot M(P), \]
The magnetic flux densities \mathbf{B}_{S_a} and \mathbf{B}_{S_b} on the respective surfaces S_a and S_b of the moving magnet E [see Figure 6(a)] have been computed versus many values of the angle $2\pi \theta_1/\theta_p$. For simplicity, this computation has been performed by considering only the surface charge density $\sigma_M(P)$. The direction of the magnetization vector \mathbf{M} of the helical toroidal magnet A that generates \mathbf{B}_{S_a} and \mathbf{B}_{S_b} was considered equal to that of the binormal unit vector related to an additional toroidal helix. This additional curve is the barycentric toroidal helix of the permanent magnet A (it is not illustrated in any figure).

3.3. Evaluation of the Forces

The computation of the forces is based on the equation [27]

$$\mathbf{F} = \int_V \rho_M \mathbf{B}_{\text{ext}} dV + \oint_S \sigma_M \mathbf{B}_{\text{ext}} dS$$

that has been obtained by applying the magnetic charges method [23–30]. Eq. (5) gives the force \mathbf{F} applied for example to a permanent magnet immersed in an external magnetic field \mathbf{B}_{ext}. The argument of the first integral in Eq. (5) represents the infinitesimal magnetic force applied from an external magnetic field \mathbf{B}_{ext} at a point P' of a permanent magnet whose volume charge density at P' is ρ_M. dV is the infinitesimal volume around P'. The argument of the second integral in Eq. (5) is the infinitesimal magnetic force applied from \mathbf{B}_{ext} to the infinitesimal surface dS of the magnet bounding surface S. σ_M is the surface charge density of dS. The second integral is a surface integral evaluated on the close surface S. Regarding the simplifying hypothesis discussed in Paragraph 3.2, we evaluate the forces applied to the moving polarized magnet E by considering only the surface charge density σ_M. Furthermore, since the magnetization vector \mathbf{M} of E is oriented towards the thickness b of the same magnet [see Figure 6(a)], only the surfaces S_a and S_b define the forces applied to E. These forces \mathbf{F}_{S_a} and \mathbf{F}_{S_b} applied to S_a and S_b, respectively, are

$$\mathbf{F}_{S_a} = \int_{S_a} \sigma_{Ma}(P') \mathbf{B}_{S_a}(P') dS_a,$$

$$\mathbf{F}_{S_b} = \int_{S_b} \sigma_{Mb}(P') \mathbf{B}_{S_b}(P') dS_b,$$

where

$$\sigma_{Ma}(P') = \mathbf{M} \times \mathbf{n}_a,$$

$$\sigma_{Mb}(P') = \mathbf{M} \times \mathbf{n}_b.$$

The sign “$-$” in Eq. (11) indicates that the direction of \mathbf{M} is opposite to that of \mathbf{n}_b. M is the module of \mathbf{M}. We note that $\sigma_{Ma}(P')$ and $\sigma_{Mb}(P')$ are constant at each point of S_a and S_b. The infinitesimal surface dS_a is an angular sector [see Figures 6(b) and 6(c)]. Consequently, we have

$$dS_a = r d\alpha dr.$$

The expression of dS_b is equal to that of dS_a, that is

$$dS_b = dS_a.$$

The infinitesimal forces

$$d\mathbf{F}_{S_a} = \sigma_{Ma}(P') \mathbf{B}_{S_a}(P') dS_a,$$

$$d\mathbf{F}_{S_b} = \sigma_{Mb}(P') \mathbf{B}_{S_b}(P') dS_b,$$
are applied to dS_a and dS_b. By integrating these forces on the whole surfaces S_a and S_b, we obtain \mathbf{F}_{Sa} and \mathbf{F}_{Sb} [see Eqs. (5) and (6)]. The resultant force \mathbf{F}_{Sab} applied to the magnet E is

$$\mathbf{F}_{Sab} = \mathbf{F}_{Sa} + \mathbf{F}_{Sb}. \quad (16)$$

The force \mathbf{F}_{Sab} is illustrated in Figure 7. It is applied to the point denoted by G_m which, as an approximation, can be considered the barycentre of the magnet E. Eqs. (6) and (7) correspond to the following six scalar equations

$$F_{Sax} = M \int_{-\varphi}^{\varphi} \int_{r_1}^{r_2} B_{Sax}(r, \alpha, \xi) r \, d\alpha \, dr, \quad (17)$$

$$F_{Say} = M \int_{-\varphi}^{\varphi} \int_{r_1}^{r_2} B_{Say}(r, \alpha, \xi) r \, d\alpha \, dr, \quad (18)$$

$$F_{Saz} = M \int_{-\varphi}^{\varphi} \int_{r_1}^{r_2} B_{Saz}(r, \alpha, \xi) r \, d\alpha \, dr, \quad (19)$$

$$F_{Sbx} = -M \int_{-\varphi}^{\varphi} \int_{r_1}^{r_2} B_{Sbx}(r, \alpha, \xi) r \, d\alpha \, dr, \quad (20)$$

$$F_{Sby} = -M \int_{-\varphi}^{\varphi} \int_{r_1}^{r_2} B_{Sby}(r, \alpha, \xi) r \, d\alpha \, dr, \quad (21)$$

$$F_{Sbz} = -M \int_{-\varphi}^{\varphi} \int_{r_1}^{r_2} B_{Sbz}(r, \alpha, \xi) r \, d\alpha \, dr, \quad (22)$$

that define the moduli with the signs of the components of the forces \mathbf{F}_{Sa} and \mathbf{F}_{Sb} with reference to the system O(X, Y, Z) (see Figure 6). ξ is the angle that defines the angular position of the polarized sector E (see Figure 6):

$$\xi = \frac{2\pi \theta_U}{\theta_p}. \quad (23)$$

Eqs. (17)–(22) are obtained by substituting Eqs. (8) and (9) in Eqs. (6) and (7), respectively. Therefore, by Eqs. (12) and (13), we obtained Eqs. (17)–(22). φ is the half angle of the plane sectors S_a and S_b. \[\]
\[r_1 \text{ and } r_2 \text{ define the smaller and higher radii, respectively, of the same sectors (see Figure 6). To make Figure 6(b) clearer, only the surface } S_a \text{ is shown [(see also Figure 6(c)]. The surface } S_b \text{ is similar to } S_a \text{ and it is obtained by shifting } S_a \text{ from a quantity } b \text{ behind } S_a \text{ [see Figure 6(a)]. The quantities } B_{Sa_x}(r, \alpha, \xi), B_{Sa_y}(r, \alpha, \xi), B_{Sa_z}(r, \alpha, \xi), B_{Sb_x}(r, \alpha, \xi), B_{Sb_y}(r, \alpha, \xi), \text{ and } B_{Sb_z}(r, \alpha, \xi) \text{ are the moduli with the signs of the components of the magnetic inductions } B_{Sa} \text{ and } B_{Sb}, \text{ that is:}
\]

\[
\begin{align*}
B_{Sa} &= B_{Sa}(B_{Sa_x}(r, \alpha, \xi), B_{Sa_y}(r, \alpha, \xi), B_{Sa_z}(r, \alpha, \xi)), \\
B_{Sb} &= B_{Sb}(B_{Sb_x}(r, \alpha, \xi), B_{Sb_y}(r, \alpha, \xi), B_{Sb_z}(r, \alpha, \xi)).
\end{align*}
\]

These components have been computed for each angular sector \(S_a \) and \(S_b \) versus the angle \(\xi \).

3.4. Evaluation of the Moments

The computation of the torque applied to the polarized sector \(E \) has been performed referring to the point \(W \) [see Figures 4, 6(b), and 6(c)]. As illustrated in Section 2, \(\tau_{SaW} \) represents the moment generated from the magnetic forces applied to the surface \(S_a \). \(\tau_{SaW} \) is obtained by integrating the infinitesimal moment

\[
\mathrm{d}\tau_{SaW} = r_W \times \mathrm{d}F_{Sa},
\]

where \(r_W \) is the vector that identifies the position of \(dS_a \) related to \(W \) [see Figures 6(b), (c)]. By substituting Eqs. (10) and (12) in Eq. (14), we obtain a new expression of \(\mathrm{d}F_{Sa} \). By putting this new \(\mathrm{d}F_{Sa} \) expression in Eq. (26) we achieve

\[
\mathrm{d}\tau_{SaW} = r_W \times B_{Sa}(r, \alpha, \xi)Mrd\alpha dr.
\]

Therefore,

\[
\tau_{SaW} = \int \int_{-\varphi}^{\varphi} r_W \times B_{Sa}(r, \alpha, \xi)Mrd\alpha dr.
\]

The computation of \(\tau_{SaW} \) by Eq. (28) is performed by evaluating its three components \(\tau_{SaW_x}, \tau_{SaW_y}, \) and \(\tau_{SaW_z} \) connected to the reference system \(O(X, Y, Z) \). The moduli with the signs of the previous three components are:

\[
\tau_{SaW_x} = M \int \int_{-\varphi}^{\varphi} [r_W B_{Sa_x}(r, \alpha, \xi) - r_W B_{Sa_y}(r, \alpha, \xi)]r_Wd\alpha dr,
\]

\[
\tau_{SaW_y} = M \int \int_{-\varphi}^{\varphi} [r_W B_{Sa_x}(r, \alpha, \xi) - r_W B_{Sa_z}(r, \alpha, \xi)]r_Wd\alpha dr,
\]

\[
\tau_{SaW_z} = M \int \int_{-\varphi}^{\varphi} [r_W B_{Sa_y}(r, \alpha, \xi) - r_W B_{Sa_z}(r, \alpha, \xi)]r_Wd\alpha dr.
\]

\(r_W, r_{Wy}, \) and \(r_{Wz} \) are the moduli with the signs of the components of the vector \(r_W \) [always referring to the same system \(O(X, Y, Z) \)]. Similarly, we obtain the corresponding moment \(\tau_{SbW} \) caused by the other surface \(S_b \):

\[
\begin{align*}
\mathrm{d}\tau_{SbW} &= r_W \times \mathrm{d}F_{Sb}, \\
\mathrm{d}\tau_{SbW} &= -r_W \times B_{Sb}(r, \alpha, \xi)Mrd\alpha dr, \\
\tau_{SbW} &= -\int \int_{-\varphi}^{\varphi} r_W \times B_{Sb}(r, \alpha, \xi)Mrd\alpha dr,
\end{align*}
\]
\[\tau_{SbWx} = -M \int_{-\varphi}^{\varphi} \int_{-r_1}^{r_2} [r'_{Wx} B_{Sb_z}(r, \alpha, \xi) - r'_{Wz} B_{Sb_y}(r, \alpha, \xi)] r dr d\alpha, \tag{35}\]

\[\tau_{SbWy} = -M \int_{-\varphi}^{\varphi} \int_{-r_1}^{r_2} [r'_{Wz} B_{Sb_x}(r, \alpha, \xi) - r'_{Wx} B_{Sb_z}(r, \alpha, \xi)] r dr d\alpha, \tag{36}\]

\[\tau_{SbWz} = -M \int_{-\varphi}^{\varphi} \int_{-r_1}^{r_2} [r'_{Wx} B_{Sb_y}(r, \alpha, \xi) - r'_{Wy} B_{Sb_y}(r, \alpha, \xi)] r dr d\alpha, \tag{37}\]

\(r'_W\) is the vector that identifies the infinitesimal surface \(dS_b\) related to the point \(W\), \(r'_{Wx}\), \(r'_{Wy}\), and \(r'_{Wz}\) are the moduli with the signs of the corresponding components, in the reference system \(O(X, Y, Z)\). By observing Figures 6(a) and 6(b), we infer that

\[r'_W = r_W + b, \tag{38}\]

where \(b\) is the vector that identifies the position of the surface \(dS_b\) starting from the corresponding surface \(dS_a\) [to make Figure 6(b) clearer, the vectors \(b\) and \(r'_W\) have not been drawn]. \(b\) is parallel to the four rectangular edges of the polarized sector \(E\) and its module is equal to \(b\) [see the thickness of \(E\) indicated in Figure 6(a)]. \(r_W\) and \(r'_W\) are functions of \(r, \alpha, \xi\), and \(r_{WU_m}(\xi)\), the vector that identifies the point \(W\) from the point \(U_m\) [see Figure 6(b)]. The evaluation of \(r_W\) and \(r'_W\) is explained in Appendix B. Finally, the resultant moment applied to the moving magnet \(E\) and, consequently, to \(F\) (pin) and \(C\) (lobed ring) related to the point \(W\) [see Figures 1–3, 4(b)] is equal to

\[\tau_W = \tau_{SaW} + \tau_{SbW}. \tag{39}\]

4. EVALUATION OF THE FORCE AND WORK ALONG THE HELICAL TOROIDAL PATH \(\Gamma_W\)

The toroidal helix \(\Gamma_W\) is the path that the point \(W\) of the F pin axis describes when the set of parts E-F-C rotates around the curvilinear screw A (see Figures 1 and 4). The force \(F_{Sab}\) and the torque \(\tau_W\) move the previous parts set along \(\Gamma_W\). In consideration of possible applications, the knowledge of how the work generated from \(F_{Sab}\) and \(\tau_W\) changes versus the rotation \(\xi\) of the whole set E-F-C around the tangent \(s-s\) [see Figure 6(a) and (23)] is important. As mentioned in the previous section, we impose \(a priori\) position of the polarized sector \(E\) facing the helical toroidal magnet \(A\). In the case study we fix this position in such a way that the surface \(S_a\) always belongs to the tangent \(t_m-t_m\) of the toroidal helix \(\Gamma_m\) [see Figures 6(a) and 6(b)]. The tangent at point \(K_m\) belongs to \(S_a\), whatever the value of \(\xi\) is. Connected to this hypothesis, by the previous formulae it is possible to evaluate \(F_{Sab}, \tau_W\), and the corresponding work versus \(\xi\). We note that the fixed position around the pin F axis \(U_m-K_m\) of the polarized sector \(E\), is certainly not the real position of \(E\) to define the true position it is necessary to find the equilibrium condition of \(E\) subject to the magnetic forces around \(U_m-K_m\). Nevertheless, we leave this study for further developments. Now, considering the configuration of the system defined by the fixed position of \(E\) just illustrated, we will evaluate the work generated by the force \(F_{Sab}\) and the torque \(\tau_W\) that move the same magnet \(E\) around the curvilinear screw \(A\). The following computation procedure can be easily modified as soon as the real equilibrium position of \(E\) around the axis \(U_m-K_m\) versus \(\xi\) is known.

4.1. Evaluation of the Force \(F_W\) along \(\Gamma_W\)

The force \(F_{Sab}\) and the torque \(\tau_W\) applied to the polarized sector \(E\) generate a work. In order to evaluate this work it is advantageous to compute the component \(F_W\) of \(F_{Sab}\) [see (16)] along the tangent \(t_W-t_W\) to \(\Gamma_W\) at the point \(W\) (see Figure 7). This force \(F_W\), together with the moment \(\tau_W\) [see (39)], pushes the set of parts E-F-C and causes its helical toroidal motion around the curvilinear screw \(B\) (see Figure 1). We compute \(F_W\) versus \(\xi\) by the following equation

\[F_W(\xi) = F_{Sab}(\xi) \cos \psi(\xi), \tag{40}\]
where $\psi(\xi)$ is the angle between $\mathbf{F}_{S_{ab}}$ and the tangent t_W-t_W (see Figure 7). The evaluation of ψ versus ξ is illustrated in Appendix D.

4.2. Evaluation of the Force \mathbf{F}_{TW} Along Γ_W

The modulus with sign τ_{W_s} of the component τ_{W_s} of τ_W along the tangent $s-s$ to the circumference Γ_R in U_m (see Figure 8) is

$$\tau_{W_s} = \tau_{W_y} \cos(\theta_U + \Delta \theta_m) - \tau_{W_x} \sin(\theta_U + \Delta \theta_m),$$

(41)

where τ_{W_x} and τ_{W_y} are the moduli with the signs of the components of τ_W along the axes X and Y, respectively. The component along the axis Z of τ_W is always perpendicular to $s-s$, therefore it can not give any contribution to τ_{W_s} and τ_{W_s}. τ_{W_s} tends to rotate the set of parts E-F-C along the degree of freedom ξ, which is around the tangent $s-s$. Consequently, the effect of τ_{W_s} is that of a force \mathbf{F}_T multiplied by the lever arm r_{WUm} that identifies the point W. This \mathbf{F}_T i) is applied in W, ii) is always perpendicular to r_{WUm}, and iii) always belongs to the plane on which ξ is defined (see Figure 9). So, we have

$$\mathbf{F}_T = \frac{\tau_{W_s}}{|r_{WUm}|},$$

(42)

where $|r_{WUm}|$ is the modulus of r_{WUm}. The component \mathbf{F}_{TW} of \mathbf{F}_T along the tangent t_W-t_W to Γ_W at the point W contributes to push the parts set E-F-C along the same tangent t_W-t_W. Denoted by $\psi_t(\xi)$ the angle between the direction of \mathbf{F}_T and t_W-t_W (see Figure 9), we obtain

$$\mathbf{F}_{TW}(\xi) = \mathbf{F}_T(\xi) \cos \psi_t(\xi).$$

(43)

The evaluation of ψ_t versus ξ is illustrated in Appendix C.

4.3. Evaluation of the Total Force $\mathbf{F}_{W_{tot}}$ along Γ_W

The total force $\mathbf{F}_{W_{tot}}$ that pushes the parts E-F-C along the tangent t_W-t_W and causes the helical toroidal motion of the same around the toroidal helicoidal screw B (see Figure 1) is equal to the sum of \mathbf{F}_W and \mathbf{F}_{TW}:

$$\mathbf{F}_{W_{tot}}(\xi) = \mathbf{F}_W(\xi) + \mathbf{F}_{TW}(\xi).$$

(44)

All the forces in Eq. (44) depend on the angle ξ. Related to the ξ value, \mathbf{F}_W and \mathbf{F}_{TW} can have the same or opposite directions. The force $\mathbf{F}_{W_{tot}}$ can be advantageously used to compute the work developed from the magnetic forces applied from the magnet A to the magnet E versus ξ. In the following section, the evaluation of this work is performed.
5. EVALUATION OF THE WORKS DEVELOPED BY THE MAGNETIC FORCES

The knowledge of the works generated by the magnetic forces is very important to the evaluation of the efficiency of an electric machine. In the case study, we can limit ourselves to evaluate the works associated with the forces \(\mathbf{F}_W, \mathbf{F}_{TW}, \) and, overall, \(\mathbf{F}_{W\text{tot}} \) versus \(\xi \). The procedure to compute these works represents a basic step in relation to other more complete evaluations that will have to be performed when electric currents and coils are considered. The infinitesimal works generated by \(\mathbf{F}_W, \mathbf{F}_{TW}, \) and \(\mathbf{F}_{W\text{tot}} \) are

\[
dL_W = \mathbf{F}_W \cdot d\Gamma_W, \tag{45}
\]

\[
dL_{TW} = \mathbf{F}_{TW} \cdot d\Gamma_W, \tag{46}
\]

\[
dL_{W\text{tot}} = \mathbf{F}_{W\text{tot}} \cdot d\Gamma_W, \tag{47}
\]

respectively. \(d\Gamma_W \) is the infinitesimal displacement vector of the point \(W \) belonging to the toroidal helix \(\Gamma_W \). By denoting \(F_W, F_{TW}, \) and \(F_{W\text{tot}} \) the moduli with the signs of the forces \(\mathbf{F}_W, \mathbf{F}_{TW}, \) and \(\mathbf{F}_{W\text{tot}} \), respectively, the previous works can be evaluated by the following expressions

\[
dL_W = F_W d\Gamma_W, \tag{48}
\]

\[
dL_{TW} = F_{TW} d\Gamma_W, \tag{49}
\]

\[
dL_{W\text{tot}} = F_{W\text{tot}} d\Gamma_W, \tag{50}
\]

The signs of \(F_W, F_{TW}, \) and \(F_{W\text{tot}} \) define the direction of the corresponding forces. \(d\Gamma_W \) is the modulus of \(d\mathbf{F}_W \):

\[
d\Gamma_W = \sqrt{x_W'(\theta_U)^2 + y_W'(\theta_U)^2 + z_W'(\theta_U)^2} d\theta_U. \tag{51}\]

\(x_W'(\theta_U), y_W'(\theta_U), \) and \(z_W'(\theta_U) \) are the derivatives with respect to \(\theta_U \) of the parametric equations \(x_W(\theta_U), y_W(\theta_U), \) and \(z_W(\theta_U) \) of \(\Gamma_W \):

\[
x_W(\theta_U) = (R - |r_{W\text{Um}}| \cos \xi) \cos(\theta_U + \Delta \theta_m), \tag{52}\]

\[
y_W(\theta_U) = (R - |r_{W\text{Um}}| \cos \xi) \sin(\theta_U + \Delta \theta_m), \tag{53}\]

\[
z_W(\theta_U) = |r_{W\text{Um}}| \sin \xi. \tag{54}\]

\(\xi \) is furnished by Eq. (23). Therefore, we can compute the works developed by the forces \(\mathbf{F}_W, \mathbf{F}_{TW}, \) and \(\mathbf{F}_{W\text{tot}} \). By substituting Eqs. (23) and (52)–(54) in Eqs. (48)–(50), referring to \(0 \leq \xi \leq 2\pi, \) is \(0 \leq \theta_U \leq \theta_p \) [see Eq. (23)], we obtain:

\[
L_W = \int_0^{\theta_p} F_W \left(\frac{2\pi \theta_U}{\theta_p} \right) \sqrt{x_W'(\theta_U)^2 + y_W'(\theta_U)^2 + z_W'(\theta_U)^2} d\theta_U, \tag{55}\]

\[
L_{TW} = \int_0^{\theta_p} F_{TW} \left(\frac{2\pi \theta_U}{\theta_p} \right) \sqrt{x_W'(\theta_U)^2 + y_W'(\theta_U)^2 + z_W'(\theta_U)^2} d\theta_U, \tag{56}\]

\[
L_{W\text{tot}} = \int_0^{\theta_p} F_{W\text{tot}} \left(\frac{2\pi \theta_U}{\theta_p} \right) \sqrt{x_W'(\theta_U)^2 + y_W'(\theta_U)^2 + z_W'(\theta_U)^2} d\theta_U. \tag{57}\]

The total work \(L_{W\text{tot}} \) relative to a complete rotation around the tangent \(s-s \) of the parts set E-F-C [see Figure 3(a)] is also equal to

\[
L_{W\text{tot}} = L_{TW} + L_W. \tag{58}\]
6. NUMERICAL EVALUATIONS AND RESULTS

The numerical evaluations have been performed as follows: i) computing of the magnetic induction generated by the helical toroidal magnet A in a finite number of points belonging to the surfaces S_a and S_b [see Figures 1 and 6(a)] versus a finite number of ξ values, ii) defining of the response surfaces to compute the magnetic induction at any point of S_a and S_b, iii) evaluation of moments and forces applied to the polarized angular sector E, and iv) computation of the works developed by the previous forces and moments related to a complete rotation of E around the curvilinear screw B.

6.1. Evaluation of the Magnetic Induction at a Finite Number of Points

The magnetic inductions $\mathbf{B}_{Sa}(\mathbf{P'})$ and $\mathbf{B}_{Sb}(\mathbf{P'})$ have been computed with the magnetic charges method [23–30] as illustrated in Section 3. The choice of the points was performed following the procedure described in [6]. 625 points of each surface S_a and S_b were fixed. These surfaces have been positioned by fixing 14 values of ξ, which correspond to 14 values of θ_U [see Eq. (23)]. Such values have been computed by Eq. (28) indicated in [6] (see also Table 2 in [6]). All the dimensions of the system are those considered in [6]. The only difference relating to the dimensions of the previous study [6] is the parameter b. For the reader’s convenience, the main dimension and parameter values of the device studied are reported in Table 1. In the present study b defines the distance between S_a and S_b [see Figure 6(a)]. In [6], only the surface S_a was considered. On the contrary, to define the magnet E (in the present study) also the surface S_b has been fixed. The value of b has been put equal to 30 mm. With reference to Table 1, we can see that the value of θ_p has been put equal to 72 degrees. This value was fixed connected to the integration domains for the computation of the works defined by Eqs. (55)–(57). Such evaluations refer to a complete rotation of the whole set E-F-C around the tangent s-s [see Figures 1, 3(a), and 6(a)]. Nevertheless, also the set of the 14 positions of the sectors S_a and S_b where $\mathbf{B}_{Sa}(\mathbf{P'})$ and $\mathbf{B}_{Sb}(\mathbf{P'})$ have been computed at 625 points/sector, is defined by θ_U and its highest value is equal to 70.2 degrees [6]. So, for computation convenience, the evaluation of $\mathbf{B}_{Sa}(\mathbf{P'})$ and $\mathbf{B}_{Sb}(\mathbf{P'})$ corresponding to the 14th position of the two sectors S_a and S_b has been performed by fixing $\theta_U = 70.2$ degrees. The different value of 72 degrees has been suitably fixed connected to the following interpolation of the magnetic inductions versus the angle ξ that changes from 0 to 360 degrees. By considering Eq. (23), we note that when $\xi = 360$ degrees, θ_U is equal to 72 degrees. The magnetic flux densities $\mathbf{B}_{Sa}(\mathbf{P'})$ and $\mathbf{B}_{Sb}(\mathbf{P'})$ have been evaluated by fixing the module of the magnetization vector

Table 1. Main dimensions and parameters of the device studied.

$	\mathbf{M}	= 4.3 \times 10^6$ A/m	
R (mm)	r_1 (mm)	r_2 (mm)	b (mm)
220.0	67.5	97.5	30.0
$0 \leq \xi \leq 2\pi$ rad			
$0 \leq \theta_U \leq \theta_p, \theta_p = \frac{2\pi}{5}$ rad (= 72 degrees)			
$\Delta \theta_m = 4 \times \frac{\pi}{180}$ rad (= 4 degrees)			
$\varphi = 10 \times \frac{\pi}{180}$ rad (= 10 degrees)			

Table 2. Value of the module $|\mathbf{r}_{WUm}|$.

$	\mathbf{r}_{WUm1}$	$	\mathbf{r}_{WUm2}$	$	\mathbf{r}_{WUm3}$	$	\mathbf{r}_{WUm4}$	$	\mathbf{r}_{WUm5}$
6.75	13.50	20.25	27.00	33.75					
$	\mathbf{r}_{WUm6}$	$	\mathbf{r}_{WUm7}$	$	\mathbf{r}_{WUm8}$	$	\mathbf{r}_{WUm9}$	$	\mathbf{r}_{WUm10}$
40.50	47.25	54.00	60.75	67.50					
Figure 10. Magnetic flux densities evaluated on the surfaces S_a and S_b.

M indicated in Table 1. In Figure 10 a semi-quantitative representation of $B_{Sa}(P')$ and $B_{Sb}(P')$ is illustrated. This figure shows 625 magnetic induction vectors for each surface S_a and S_b. 14 pairs of surfaces and $2 \times 625 \times 14 = 2500$ vectors have been shown. Each pair of surfaces S_a and S_b defines a position of the polarized sector E during its helicoidal toroidal motion around the curvilinear screw B. The length of the previous vectors is suitably scaled versus their moduli. We note that the order of magnitude of the $B_{Sb}(P')$ moduli can be more than ten times lower than that of $B_{Sa}(P')$. $B_{Sa}(P')$ has already been computed in [6]. The maximum module value of the magnetic flux density $B_{Sa}(P')$ is equal to 0.1805 Tesla [6].

6.2. Response Surfaces

In order to perform the computation of the integrals in Eqs. (17)–(22), (29)–(31), and (35)–(37), the moduli with the signs $B_{Sax}(r, \alpha, \xi)$, $B_{Say}(r, \alpha, \xi)$, $B_{Sa2}(r, \alpha, \xi)$, $B_{Sbx}(r, \alpha, \xi)$, $B_{Sby}(r, \alpha, \xi)$, and $B_{Sbz}(r, \alpha, \xi)$ of the components of the magnetic inductions B_{Sa} and B_{Sb} have to be known for each value of r, α, and ξ in the integration domain. Therefore, the previous moduli have to be continuous functions of r and α (ξ is fixed because it defines the angular position of S_a and S_b). This continuity can be obtained by using the response surfaces that interpolate the discrete values of the magnetic inductions previously evaluated at 625 points/sector S_a and S_b. In this way, we achieve a numerically continuous function for each module with its sign. Figure 11 shows an example of surface response relative to the evaluation of the module with the sign $B_{Sax}(r, \alpha, \xi)$ with $r_1 \leq r \leq r_2$, $-\varphi \leq \alpha \leq +\varphi$, and $\xi = 0$ degrees [see $B_{Sa}(P')_1$ in Figure 10]. In Figure 11 $B_{Sa}(r, \alpha, \xi)$ has been denoted by $B_{Sa}(r, \alpha)_1$.

6.3. Forces and Moments Applied to the Moving Set E-F-C

The evaluation of the total force F_{Wtot} that pushes the parts E-F-C along the tangent t_W-t_W has been performed by using Eqs. (17)–(22), (29)–(31), and (39)–(44). This force was computed relating to the fourteen positions of S_a and S_b illustrated in Figure 10. Moreover, a further position of the surfaces pair S_a and S_b has been added by fixing $\xi = 360$ degrees. The modulus with sign F_{Wtot} of F_{Wtot} relative to this 15th position and that computed when $\xi = 0$ degrees is the same (S_a and S_b have the 1st position indicated in Figure 10). So, the magnetic field generated by the toroidal helicoidal magnet A has an axial symmetry [6] that also implies the corresponding axial symmetry of the forces generated by the same field on the sectors S_a and S_b positioned as previously described. Therefore, fifteen values of F_{Wtot} are available. The values of F_{Wtot} relative to $\xi = 0$ and 360 degrees are equal. By interpolating this 15 values with a spline curve we obtain the continuous function $F_{Wtot}(\xi)$ with $0 \leq \xi \leq 360$ degrees. This function remains the same even when the parts E-F-C describe a complete angular rotation and start the following one. Since the toroidal helicolidal magnet A has five coils (see Figure 1), $F_{Wtot}(\xi)$ represents a periodic function that repeats itself five times.

Consequently, whatever the position around the circumference Γ_R of the same set is, we obtain the force applied to the set E-F-C. In addition, we can see that $F_{Wtot}(\xi)$ also depends on $|r_{WU}|$.

we note that also previously fixed. Figure 13 shows the results obtained. By observing the curves reported in such figure, the modulus of the vector r_{WUM} [see Figure 6(b), Eqs. (34)–(37), Appendix B and Section 4]. By changing the value of $|r_{WUM}|$, we achieve different curves $F_{Wtot}(\xi, |r_{WUM}|)$. Figure 12 shows the curves $F_{Wtot}(\xi, |r_{WUM}|)$ related to ten different $|r_{WUM}| (i = 1, 2, \ldots, 10)$. Table 2 reports the values of $|r_{WUM}|$ considered. They have been obtained by the following relation

$$|r_{WUM}| = i \times \frac{\pi}{10},$$

(59)

where $(i = 1, 2, \ldots, 10)$. We note that in general, F_{Wtot} always has the same direction along the tangent t_W-t_W. Only when the axis of the pin F is more or less horizontal (ξ is close to 0 or 360 degrees), the F_{Wtot} direction changes (F_{Wtot} has negative values).

The computation of the torque applied to the set of the parts E-F-C has been performed by using the same numerical approach developed to compute F_{Wtot}. Therefore, the modulus with the sign r_{Ws} [see Eq. (41)] of the moment r_{Ws} has been evaluated versus ξ and the same ten values of $|r_{WUM}|$ previously fixed. Figure 13 shows the results obtained. By observing the curves reported in such figure, we note that also r_{Ws} changes its direction when ξ is close to 0 or 360 degrees. Moreover, r_{Ws} correctly decreases when W tends to K_m, that is when $|r_{WUM}|$ increases and the corresponding moduli $|r_W|$ and $|r_W|$ decrease [see Figure 6(b), Eqs. (B2), (26), (32), (38) and the trends of $r_{Ws}(\xi, |r_{WUM}|)]$.

6.4. Evaluation of the Works

The works L_W, L_{TW}, and L_{Wtot} developed by the forces F_W, F_{TW}, and F_{Wtot}, respectively [see Eqs. (40), (43), and (44)] have been numerically computed by solving the integrals indicated in Eqs. (55)–(57). Ten evaluations of the term L_W, L_{TW}, and L_{Wtot} were performed. Each evaluation corresponded to the ten values of $|r_{WUM}|$ reported in Table 2. The corresponding ten values of each work computed have been interpolated by a spline function versus $|r_{WUM}| \leq |r_{WUM}| \leq |r_{WUM10}|$. In this way the three functions $L_W(|r_{WUM}|)$, $L_{TW}(|r_{WUM}|)$, and $L_{Wtot}(|r_{WUM}|)$ reported in Figure 14 were achieved. We note that these works are relative to a complete rotation of the parts set E-F-C around the curvilinear screw A (see Figures 1 and 4). Connected to the axial symmetry of the particular magnetic field of this device [6], L_W, L_{TW}, and L_{Wtot} are generated to each subsequent complete rotation of the parts E-F-C around the screw A. Therefore, the principle of energy conservation should not be outwardly satisfied. However, we must observe that i) we have fixed a priori the angular positions of the polarized sector E facing the magnet A and ii) the effect of the volume charge density $\rho_M(P)$ [see Eq. (3)] of the same magnet A has not been considered. In relation to the point i), we note that by forcing the polarized sector E position (it has been assumed a priori), certain work depending on magnetic forces has to be done. Consequently, if E was free to rotate around its pin F, it would finish in a different position (an equilibrium position) from how a priori was fixed. The work needed to rotate the magnet E from the equilibrium position to the position fixed has not been considered. This work, in general, has to be furnished to the system.
Referring to point ii), if we do not consider the volume charge density, we disregard a certain contribution to the magnetic flux density. Therefore, the forces, moments and works associated with this contribution have not been taken into account. In this way we can justify the apparent energy generation of the system without using external energy sources.

7. CONCLUSIONS

An approach to computing forces, moments, and works in helical toroidal magnetic devices has been presented. The case study was developed with particular reference to a device constituted by permanent magnets, but the procedure illustrated to compute forces and moments is valid for whichever method is used to generate the magnetic flux density. Coils and currents (with or without permanent magnets) can be used to generate the magnetic inductance. The knowledge of forces and moments caused by this particular configuration of the magnetic field can be advantageous when searching for new configurations of electrical machines with high efficiency. In addition, the model illustrated can be useful to study the force applied to the conductors of machines like tokamaks and similar ones [7–18]. All the numerical computations of the present study have been performed by using the software MATHEMATICA 10.3 [31]. Further developments of this work will focus on the calculation of the forces, moments applied to the polarized sector E when the magnetic flux density is generated by an arrangement of plane magnet sectors with a constant magnetization vector \mathbf{M} towards the relative thickness. This new arrangement of permanent magnets will be near to the helical toroidal shape of the magnet A illustrated in Figure 1. In this way it will be not necessary to consider the contribution of the volume charge density $\rho_M(\mathbf{P})$ [see (3)] which, in the present study, has been disregarded. Moreover, for each position of the polarized sector E, the corresponding equilibrium around the pin F will be found. Therefore we will compute the new trends of the works L_W, L_{TW}, and L_{Wtot}.

APPENDIX A.

The analytical formulation for numerical computing of \mathbf{B}_{Sa} is described in detail in [6]. The formulation is based on the magnetic charge method. By applying this method, for simplicity, we neglect the contribution of the volume charge density ρ_M. We only consider the effect of the surface charge density σ_M. Denoting S_1 and S_2 the surfaces of the permanent magnet A indicated in Figure A1, related to the direction of the magnetization \mathbf{M} of A, only these two surfaces give a contribution to the magnetic flux density \mathbf{B}_{Sa}. The actual results are:

$$\sigma_{M1}(\mathbf{P}) \triangleq M_x(\mathbf{P})n_{S1x}(\mathbf{P}) + M_y(\mathbf{P})n_{S1y}(\mathbf{P}) + M_z(\mathbf{P})n_{S1z}(\mathbf{P}),$$

$$\sigma_{M2}(\mathbf{P}) \triangleq M_x(\mathbf{P})n_{S2x}(\mathbf{P}) + M_y(\mathbf{P})n_{S2y}(\mathbf{P}) + M_z(\mathbf{P})n_{S2z}(\mathbf{P}).$$
\[\sigma_{M3}(P) \approx 0, \]
\[\sigma_{M4}(P) \approx 0. \]
\[\sigma_{M1}, \sigma_{M2}, \sigma_{M3}, \text{ and } \sigma_{M4} \text{ are the surface charge densities of the surfaces } S_1, S_2, S_3, \text{ and } S_4 \text{ of the magnet } A, \text{ respectively. } \]
\[\hat{n}_{S1}, \hat{n}_{S2}, \hat{n}_{S3}, \text{ and } \hat{n}_{S4} \text{ are the normal versors at the generic point } P \text{ of the infinitesimal surfaces } dS_1, dS_2, dS_3, \text{ and } dS_4, \text{ respectively. } \]
\[\hat{n}_{S1} \text{ and } \hat{n}_{S2} \text{ are approximately parallel to the magnetization vector } \mathbf{M} \text{ of } A \text{ (see Figure 1), while } \hat{n}_{S3} \text{ and } \hat{n}_{S4} \text{ are nearly perpendicular to } \mathbf{M} = (M_x, M_y, M_z). \]

Consequently we obtain
\[\mathbf{B}_{S}(P') \approx \mathbf{B}_{S1}(P') + \mathbf{B}_{S2}(P') \] (A5)
where [28]
\[\mathbf{B}_{S1}(P') = \frac{\mu_0}{4\pi} \int_{S1} \frac{\sigma_{M1}(P')(P' - P)}{|P' - P|^3} dS \] (A6)
and
\[\mathbf{B}_{S2}(P') = \frac{\mu_0}{4\pi} \int_{S2} \frac{\sigma_{M2}(P)(P' - P)}{|P' - P|^3} dS \] (A7)

In Eqs. (A5)–(A7) the vector \(P' \) identifies the generic point of \(S_a \). By the same approach we compute \(\mathbf{B}_{Sb} \), whatever the position of \(S_a \) and \(S_b \) is. The vectors \(\mathbf{B}_{Sa} \) and \(\mathbf{B}_{Sb} \) evaluated at 625 points \(P' \) (end of \(P' \)) of \(S_a \) and \(S_b \) are illustrated in Figure 10. The image shows 14 pairs of surfaces \(S_a \) and \(S_b \) and the relative magnetic inductions.

APPENDIX B.

This appendix contains explicit expressions for the parameters \(b \) and \(r_W \) for computing the vector \(r'_W \) defined by Eq. (38). With reference to Figure B1, the vector \(r \), whose modulus is \(r \) [see Figure 6(b)], is
\[r = r_W U_m + r_W, \] (B1)
from which we obtain
\[r_W = r - r_W U_m. \] (B2)

By considering a reference system \(K_m(X', Y', Z') \) integral to \(S_a \) \(X' \) and \(Z' \) overlap with the tangent \(t_m-t_m \) and \(r_W U_m \), respectively, \(Y' \) is perpendicular to \(X' \) and \(Z' \), see also Figure 6(a)], the moduli with the signs of the \(r \) components in such a system are
\[r_{x'} = r \sin \alpha, \] (B3)
\[r_{y'} = 0, \] (B4)
\[r_{z'} = r \cos \alpha - r_m, \] (B5)
where
\[r_m = \frac{r_1 + r_2}{2} \] (B6)
is the distance between the points U_m and K_m (see Figures B1 and 6). In the same $K_m(X', Y', Z')$, the moduli with the signs of the components of r_{WU_m} are

$$r_{WU_{m{x'}}} = 0,$$ \hspace{1cm} (B7)

$$r_{WU_{m{y'}}} = 0,$$ \hspace{1cm} (B8)

$$r_{WU_{m{z'}}} = r_{WU_m}.$$ \hspace{1cm} (B9)

In Eq. (B9) r_{WU_m} represents the modulus with the sign of the vector r_{WU_m}. By Eqs. (B3)–(B9) and (B2), we obtain the moduli with the signs of the components of r_W in the reference system $K_m(X', Y', Z')$:

$$r_{W_{x'}} = r \sin \alpha,$$ \hspace{1cm} (B10)

$$r_{W_{y'}} = 0,$$ \hspace{1cm} (B11)

$$r_{W_{z'}} = r \cos \alpha - r_m - r_{WU_m}.$$ \hspace{1cm} (B12)

By denoting (l_1, m_1, n_1), (l_2, m_2, n_2), and (l_3, m_3, n_3) the direction cosines of the X', Y', Z' axes relative to the X, Y, Z axes, respectively, we obtain the following moduli with the signs of the components of r_W in the system $O(X, Y, Z)$:

$$r_{W_{x'}} = l_1 r_{W_{x'}} + l_2 r_{W_{y'}} + l_3 r_{W_{z'}},$$ \hspace{1cm} (B13)

$$r_{W_{y'}} = m_1 r_{W_{x'}} + m_2 r_{W_{y'}} + m_3 r_{W_{z'}},$$ \hspace{1cm} (B14)

$$r_{W_{z'}} = n_1 r_{W_{x'}} + n_2 r_{W_{y'}} + n_3 r_{W_{z'}}.$$ \hspace{1cm} (B15)

By substituting (B10)–(B12) in (B13)–(B15), the final expressions of r_{Wx}, r_{Wy}, and r_{Wz} are given by

$$r_{W_x} = l_1 r \sin \alpha + l_3(r \cos \alpha - r_m - r_{WU_m}),$$ \hspace{1cm} (B16)

$$r_{W_y} = m_1 r \sin \alpha + m_3(r \cos \alpha - r_m - r_{WU_m}),$$ \hspace{1cm} (B17)

$$r_{W_z} = n_1 r \sin \alpha + n_3(r \cos \alpha - r_m - r_{WU_m}).$$ \hspace{1cm} (B18)

The direction cosines have to be evaluated versus the angle ξ, that is, $l_i = l_i(\xi)$, $m_i = m_i(\xi)$, and $n_i = n_i(\xi)$ with $i = 1, 2, 3$. Finally, we evaluate the moduli with sign of the b vector components. In the reference system $K_m(X', Y', Z')$ the moduli with the signs are the following (see Figure B1):

$$b_{x'} = 0,$$ \hspace{1cm} (B19)

$$b_{y'} = b,$$ \hspace{1cm} (B20)

$$b_{z'} = 0.$$ \hspace{1cm} (B21)

Therefore, the corresponding values in the $O(X, Y, Z)$ are again obtained by using the direction cosines previously defined:

$$b_x = l_1 b_{x'} + l_2 b_{y'} + l_3 b_{z'},$$ \hspace{1cm} (B22)

$$b_y = m_1 b_{x'} + m_2 b_{y'} + m_3 b_{z'},$$ \hspace{1cm} (B23)

$$b_z = n_1 b_{x'} + n_2 b_{y'} + n_3 b_{z'}.$$ \hspace{1cm} (B24)
By substituting (B19)–(B21) in the previous equations, we obtain

\[b_x = l_2 b, \]
\[b_y = m_2 b, \]
\[b_z = n_2 b. \]

(APPENDIX C.)

In this appendix, we evaluate the angle \(\psi \) between the tangent \(t_W-t_W \) and the force \(F_{Sab} \) applied by the magnet A to the magnet E (see Figures 7 and 1). By denoting the moduli with the signs \(w_x, w_y, \) and \(w_z \) of the versor of the tangent \(t_W-t_W \) to the toroidal helix \(\Gamma_W \) in W (see Figure 7), the angle \(\psi \) is given by the following equation

\[\psi = \arccos \left(\frac{w_x F_{Sax} + w_y F_{Saby} + w_z F_{Sabz}}{1 \cdot |F_{Sab}|} \right), \]

where \(F_{Sabx}, F_{Saby}, \) and \(F_{Sabz} \), are the moduli with the signs of the component of the force \(F_{Sab} \). \(|F_{Sab}| \) is the module of \(F_{Sab} \) and the number “1” in the denominator of Eq. (B1) represents the module of the versor of \(t_W-t_W \). \(F_{Sab} \) furnishes by Eq. (16) and its components are known. Since \(w_x, w_y, w_z, F_{Sabx}, F_{Saby}, \) and \(F_{Sabz} \) depend on \(\xi \), Eq. (C1) furnishes the function \(\psi = \psi(\xi) \).

(APPENDIX D.)

In this appendix, we evaluate the angle \(\psi_t(\xi) \) between the tangent \(t_W-t_W \) and the force \(F_T \) (see Figure 9). \(\xi \) changes from 0 to 2\(\pi \). We indicate \(\hat{T} \) the versor of the tangent \(t_T-t_T \) along which \(F_T \) is applied. The moduli with the signs of the components of \(\hat{T} \) are (see Figure D1):

\[T_x = 1 \cdot \sin \xi \cos(\Delta_m + \frac{\xi \theta_p}{2\pi}), \]
\[T_y = 1 \cdot \sin \xi \sin(\Delta_m + \frac{\xi \theta_p}{2\pi}), \]
\[T_z = 1 \cdot \cos \xi. \]

![Figure D1](image_url).

Figure D1. Components \(T_x, T_y, \) and \(T_z \) of the versor \(\hat{T} \).
The quantity $\frac{\partial \mathbf{F}}{\partial U}$ in Eqs. (C1)–(C3) represents θ_U [see Eq. (23)]. Let us indicate \mathbf{t}_W the versor of the tangent $tW-tW$. The moduli with the signs tW_x, tW_y, and tW_z of the components of \mathbf{t}_W are

\begin{align*}
 tW_x &= \frac{x'_W(\theta_U)}{\sqrt{x'_W(\theta_U)^2 + y'_W(\theta_U)^2 + z'_W(\theta_U)^2}} \\
 tW_y &= \frac{y'_W(\theta_U)}{\sqrt{x'_W(\theta_U)^2 + y'_W(\theta_U)^2 + z'_W(\theta_U)^2}} \\
 tW_z &= \frac{z'_W(\theta_U)}{\sqrt{x'_W(\theta_U)^2 + y'_W(\theta_U)^2 + z'_W(\theta_U)^2}}
\end{align*}

where $x'_W(\theta_U)$, $y'_W(\theta_U)$, and $z'_W(\theta_U)$ are the derivatives with respect to θ_U of the parametric equations $x_W(\theta_U)$, $y_W(\theta_U)$, and $z_W(\theta_U)$ of Γ_W [see Eqs. (52)–(54)]. In Eqs. (D4)–(D5), again we substitute θ_U with $\frac{\partial \mathbf{F}}{\partial U}$ and obtain $tW_x = tW_x(\xi)$, $tW_y = tW_y(\xi)$, and $tW_z = tW_z(\xi)$. The angle $\psi(\xi)$ is given by the following expression:

$$
\psi = \arccos \frac{tW_xT_x + tW_yT_y + tW_zT_z}{1 \cdot 1}.
$$

The product $1 \cdot 1$ in the denominator of Eq. (D7) underlines that the moduli of the two versors \mathbf{T} and \mathbf{t}_W are equal to the unit value.

APPENDIX E. NOMENCLATURE

- b thickness of the magnet E [see Figure 6(a)]
- \mathbf{b} vector that identifies the position of the surface dS_b starting from the corresponding surface dS_a (the module of \mathbf{b} is b)
- \mathbf{B} magnetic flux density
- \mathbf{B}_a magnetic induction on the surface S_a
- \mathbf{B}_b magnetic induction on the surface S_b
- dL_W infinitesimal work generated by \mathbf{F}_W along the displacement $d\Gamma_W$
- dL_{TW} infinitesimal work generated by \mathbf{F}_{TW} along the displacement $d\Gamma_W$
- dL_{Wtot} infinitesimal work generated by \mathbf{F}_{Wtot} along the displacement $d\Gamma_W$
- dS_a infinitesimal surface of the magnet E facing the magnet A
- dS_b infinitesimal surface of the magnet E opposite to S_a
- $d\Gamma_W$ infinitesimal displacement vector of the point W belonging to the toroidal helix Γ_W
- \mathbf{F}_a force applied by the helical toroidal magnet A to the surface S_a
- \mathbf{F}_b force applied by the helical toroidal magnet A to the surface S_b
- \mathbf{F}_{Sab} resultant force applied to magnet E (see Figure 7)
- \mathbf{T} force associated to the moment τ_{W_s}
- \mathbf{F}_{TW} component of \mathbf{F}_T along the tangent $tW-tW$ to Γ_W at the point W (see Figure 9)
- \mathbf{F}_W component of \mathbf{F}_{Sab} [see (15)] along the tangent $tW-tW$ to Γ_W at the point W (see Figure 7)
- \mathbf{F}_{Wtot} total force that pushes the parts E-F-C along the tangent $tW-tW$ (see Figure 9)
- F_{TW} modulus of \mathbf{F}_{TW}
- F_W modulus of \mathbf{F}_W
- F_{Wtot} modulus of \mathbf{F}_{Wtot}
- \mathbf{H} magnetic field strength
- L_W work developed by the force \mathbf{F}_W related to a complete rotation around the tangent $s-s$ of the parts set E-F-C [see Figure 6(a)]
- L_{TW} work developed by the force \mathbf{F}_{TW} related to a complete rotation around the tangent $s-s$ of the parts set E-F-C [see Figure 6(a)]
- L_{Wtot} work developed by the force \mathbf{F}_{Wtot} related to a complete rotation around the tangent $s-s$ of the parts set E-F-C [see Figure 6(a)]
- l_1, m_1, n_1 direction cosines of the X' axis integral to the magnet E and related to the X, Y, Z axes, respectively (see Figure B1)
- l_2, m_2, n_2 direction cosines of the Y' axis integral to the magnet E and related to the X, Y, Z axes, respectively (see Figure B1)
l₃, m₃, n₃ direction cosines of the Z' axis integral to the magnet E and related to the X, Y, Z axes, respectively (see Figure B1)

M magnetization vector

M module of M

\(\mathbf{n} \) normal versor to the surface on which \(\sigma_M(\mathbf{P}) \) is defined

\(\mathbf{n}_a \) outgoing versor of the surface \(S_a \)

\(\mathbf{n}_b \) outgoing versor of the surface \(S_b \)

\(\mathbf{P} \) vector that identifies a generic point \(P \) of a magnet

\(\mathbf{P}' \) vector that identifies the point where the surface charge density is evaluated

\(r_1 \) internal radius of \(S_a \) and \(S_b \)

\(r_2 \) external radius of \(S_a \) and \(S_b \)

\(r_G \) radius of the torus illustrated in Figure 4(a)

\(r_m \) radius of the circular transversal section of the torus at which \(\Gamma \) belongs

\(\mathbf{r}_W \) vector that identifies the infinitesimal surface \(dS_a \) with respect to \(W \) [see Figure 6(b)]

\(\mathbf{r}_{WUM} \) vector that identifies the point \(W \) from the point \(U_m \) [see Figure 6(b)]

\(r_{WUM} \) modulus of \(\mathbf{r}_{WUM} \)

\(\mathbf{r}_W \) vector that identifies the infinitesimal surface \(dS_b \) with respect to \(W \) [see Figure 6(b)]

\(R \) radius of \(\Gamma \)

\(S_a \) surface of the magnet E facing the magnet \(A \)

\(S_b \) surface of the magnet E opposite to \(S_a \)

\(x, y, z \) coordinates of the generic point \(W \) of \(\Gamma \)

\(x'_{W}(\theta_U) \) derivative of \(x_W \) with respect to \(\theta_U \)

\(y'_{W}(\theta_U) \) derivative of \(y_W \) with respect to \(\theta_U \)

\(z'_{W}(\theta_U) \) derivative of \(z_W \) with respect to \(\theta_U \)

\(\alpha, \rho \) polar coordinates that define the positions of \(dS_a \) and \(dS_b \) on \(S_a \) and \(S_b \), respectively [see Figure 6(b) and 6(c)]

\(\Gamma \) barycentric curve of the helical toroidal surface of the magnet \(A \) facing the surface \(S_a \) (see Figure 1 and 5)

\(\Gamma_m \) helical toroidal curve coaxial to \(\Gamma_W \) [path of the point \(K_m \) (the barycentre of \(S_a \)), see Figures 4 and 6(a)]

\(\Gamma_R \) barycentric circumference of the helical toroidal screw \(B \)

\(\Gamma_W \) path generated by the point \(W \) [see Figure 4(a)]

\(\Delta \theta_m \) rotation angle of \(\Gamma \) around the axis \(Z \) to generate \(\Gamma_m \)

\(\xi \) angle that identifies the position of \(S_a \) and \(S_b \)

\(\theta_p \) angular extension measured in the plane that contains \(\Gamma_R \) of a coil of the magnet \(A \) [see Figures 6(a) and 6(c)]

\(\theta_U \) angle that identifies the point \(U \) of \(\Gamma_R \) [see Figure 6(a)]

\(\varphi \) semiplane of the polarized angular sector \(E \) [see Figures 6(a) and 6(c)]

\(\rho_M(\mathbf{P}) \) volume charge density

\(\sigma_M(\mathbf{P}) \) surface charge density

\(\sigma_{M_a}(\mathbf{P}') \) surface charge density of the surface \(S_a \)

\(\sigma_{M_b}(\mathbf{P}') \) surface charge density of the surface \(S_b \)

\(\tau_{S_W} \) moment generated from \(\mathbf{F}_{S_W} \) and applied to the parts \(E, F, \) and \(C \)

\(\tau_{S_W} \) component of \(\tau_{S_W} \) along the tangent \(s-s \) (see Figure 4(b))

\(\tau_W \) resultant moment applied to the moving magnet \(E \), the pin \(F \), and the lobed ring \(C \) with respect to the point \(W \) [see Figures 1–3, 4(b)]

\(\tau_{W_s} \) component of \(\tau_W \) along the tangent \(s-s \) to the circumference \(\Gamma_R \) in \(U_m \) (see Figure 8)

\(\psi \) angle between \(\mathbf{F}_{S_W} \) and the tangent \(t_W-t_W \) (see Figure 7)

\(\psi_t \) angle between the direction of \(\mathbf{F}_T \) and \(t_W-t_W \) (see Figure 9)

APPENDIX F. SUPPLEMENTARY MATERIALS

The numerical implementation concerning the Mathematica programming is available (please contact the author at muscia@units.it).
REFERENCES

