PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 6 > pp. 13-20

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE

By Y. Wu, H.-Q. Liu, and H.-C. So

Full Article PDF (276 KB)

Abstract:
In this paper, direction-of-arrival (DOA) estimation of a single narrow-band source with uniform linear arrays is addressed. The basic idea is to convert the received data to a correlation sequence which can be modelled as a noisy sinusoid. Then the computationally attractive and accurate generalized weighted linear predictor frequency estimator is applied for DOA determination. The effectiveness of the proposed method is demonstrated via computer simulations.

Citation:
Y. Wu, H.-Q. Liu, and H.-C. So, "Fast and Accurate Direction-of-Arrival Estimation for a Single Source," Progress In Electromagnetics Research C, Vol. 6, 13-20, 2009.
doi:10.2528/PIERC08121507
http://www.jpier.org/pierc/pier.php?paper=08121507

References:
1. Johnson, D. H. and D. E. Dudgeon, Array Signal Processing Concepts and Techniques, Prentice Hall, Englewood Cliffs´╝îNJ, 1993.

2. Haykin, S., Advances in Spectrum Analysis and Array Processing, Vol. 2, Prentice Hall, Englewood Cliffs, NJ, 1991.

3. Krim, H. and M. Viberg, "Two decades of array processing research: The parametric approach," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, Jul. 1996.
doi:10.1109/79.526899

4. Wax, M., "Detection and estimation of superimposed signals," Ph.D. Dissertation, Stanford University, 1982.

5. Evans, J. E., J. R. Johnson, and D. F. Sun, Application of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance systems , Technical Report #582, Lincoln laboratory, MIT, Jun. 1982.

6. Hertz, D. and I. Ziskind, "Fast approximate maximum likelihood algorithm for single source localization," IEE Proc. Radar. Sonar. Navig., Vol. 142, No. 5, 232-235, Oct. 1995.
doi:10.1049/ip-rsn:19952112

7. Stoica, P. and O. Besson, "Maximum likelihood DOA estimation for constant-modulus signal," IEE Electronics Letters, Vol. 36, No. 9, 849-851, Apr. 2000.
doi:10.1049/el:20000620

8. Schmidt, R. O., "A signal subspace approach to multiple emitter location and spectral estimation ," Ph.D. Dissertation, Stanford University, 1985.

9. So, H. C. and F. K. W. Chan, "A generalized weighted linear predictor frequency estimation approach for a complex sinusoid," IEEE Transactions on Signal Processing, Vol. 54, No. 4, 1304-1315, Apr. 2006.
doi:10.1109/TSP.2005.863119

10. So, H. C. and F. K. W. Chan, "Approximate maximum likelihood algorithms for two-dimensional frequency estimation of a complex sinusoid," IEEE Transactions on Signal Processing, Vol. 54, No. 8, 3231-3237, Aug. 2006.
doi:10.1109/TSP.2006.877654

11. Stoica, P., "Asymptotic second-order properties of sample partial correlations," IEEE Trans. Acoust. Speech Signal Processing, Vol. 37, No. 6, 925-955, Jun. 1989.
doi:10.1109/ASSP.1989.28069

12. Kay, S., "A fast and accurate single frequency estimation," IEEE Trans. Acoust. Speech Signal Processing, Vol. 37, 1987-1990, Nov. 1989.

13. Tayem, N. and H. M. Kwon, "L-shape 2-dimensional arrival angle estimation with propagator method," IEEE Transactions on Antenna and Propagation, Vol. 53, No. 5, 1622-1630, May 2005.
doi:10.1109/TAP.2005.846804

14. Kumaresan, R., L. L. Scharf, and A. K. Shaw, "An algorithm for pole-zero modeling and spectral analysis," IEEE Trans. Acoust. Speech Signal Processing, Vol. 34, No. 3, 637-640, Jun. 1986.
doi:10.1109/TASSP.1986.1164843


© Copyright 2010 EMW Publishing. All Rights Reserved